	題目	所属	執	筆者	Vol.−No. (発行年)	頁 ——
[特:	集]代替エネルギーの開発状況と今後の課題					
(1)	太陽エネルギー開発の現状と今後の課題	名古屋工業技術試験層	斤 野口	哲男	1-1 (1980)	28
(2)	石炭の液化—技術開発の現状と今後の課題	函館工業高等専門学校	交 武谷	愿	1-1 (1980)	42
(3)	水素エネルギー開発の現状と今後の課題	大阪大学	鱼 田村	英雄	1-1 (1980)	50
(4)	風力エネルギー開発の現状と今後の課題	足利工業大学	学 牛山	泉	1-1 (1980)	58
(5)	バイオマス利用の現状と今後の課題	(財)野口研究所	f 鈴木	明	1-1 (1980)	66
(6)	核融合研究の現状と今後の課題	東京大学	夕 内田	岱二郎	1-1 (1980)	71
[特:	集]太陽エネルギーの化学的変換並びに貯蔵における諸問題	•				
(1)	太陽エネルギーの化学的変換ならびに貯蔵	東京大学	上 長倉	三郎	1-2 (1980)	31
(2)	高エネルギー物質の光化学的生成	京都大学	吉田 幸	善一	1-2 (1980)	34
(3)	光合成類似系による光エネルギーの化学変換―人工光合成	.— 九州大学	ዾ 松尾	拓	1-2 (1980)	39
(4)	固体による太陽エネルギー変換	大阪大学	上 浜川	圭弘	1-2 (1980)	44
[特:	集]廃棄物のエネルギー回収利用					
(1)	一般廃棄物・下水汚泥からのエネルギー回収利用について	科学技術所	吉本 :	秀幸	1-3 (1980)	28
(2)	廃棄物よりの物質・エネルギー回収についての各国の考え方	と現状 東京都立大学	≠ 平山	直道	1-3 (1980)	37
(3)	ごみ発電と地域暖房	札幌市環境原	易 三谷	普人	1-3 (1980)	44
		(株)タクラ	7 塩月	隼人	1-3 (1980)	
(4)	都市ごみのエネルギー回収システム	三菱重工業(株) 北見	誠一	1-3 (1980)	55
(5)	都市ごみからの物質・エネルギー回収技術	(株) 荏原製作所	f 鳥巣	正浩	1-3 (1980)	64
			/ 石井	善明		
			/ 関口	英明		
			/ 久米	勤		
(6)	都市ごみのメタン発酵によるガス回収利用	日立プラント建設(株) 奥村	英樹	1-3 (1980)	71
			, 江森	弘祥		
		(株)日立製作所	斤 緒田	原蓉二		
[特:	集]エネルギー変換関連の材料開発					
(1)	イオン導電性固体とエネルギー変換	名古屋大学	声 高橋	武彦	1-4 (1980)	42
(2)	金属水素化物を利用した太陽熱膜分離システムの提案	工学技術院	記 小野	修一郎	1-4 (1980)	50
(3)	省エネルギーとニューセラミックス	工学技術院	完 上野	力	1-4 (1980)	55
(4)	超電導材料	日本大学	安河	内 昴	1-4 (1980)	62
[特:	集]省エネルギー					
(1)	省エネルギー法とその活用について	資源エネルギー原	南 菊岡	栄次	2-1 (1981)	22
(2)	熱交換プロセスの省エネルギー構成とアプローチ温度	京都大	单 高松	武一郎	2-1 (1981)	27
			/ 仲	勇治		
			, 寺下	雅之		
			/ 高田	康晴		
(3)	小温度差エネルギーシステムにおける作動媒体	東京農工大学	≥ 乙竹	直	2-1 (1981)	33
(4)	工業電解の省エネルギー	横浜国立大学	单 高橋	正雄	2-1 (1981)	38
(5)	ボイラー等による廃熱回収システム	(株)平川鉄工戸	f 溝渕	泉	2-1 (1981)	45
(6)	燃料電池による民生用省エネルギーシステム	大阪瓦斯(株)森	英雄	2-1 (1981)	51
(7)	省エネルギー機器としてのヒートポンプ	日立造船(株)中西	雄	2-1 (1981)	57
			, 古川	哲郎		
		,	/ 井上	司朗		
(8)	省エネルギー機器としてのヒートパイプ	東北大学			2-1 (1981)	64
			, 宍戸		·	
(9)	家電商品の省エネルギー化の取り組みについて	松下電器産業(株			2-1 (1981)	71
(10)		(株)ノザワ		貞止	2-1 (1981)	
/	E	VPIO -			= : ()	

20 マンガンノジュールの採掘技術について 公舎資源研究所 伊藤 福夫 2~2(1981)38 30 海水からの核燃料資源の回収について 大分工業大学 古歴(中男) 2~2(1981)58 4次 パグラリアを利用した低品位鉱よりの金属資源の回収 京都分学 伊藤 一郎 2~2(1981)58 4家族技術と保安技術 公舎資源研究所 大場 重美 2~2(1981)58 4家族技術と保安技術 公舎資源研究所 大場 重美 2~2(1981)58 60 金属鉱物資源の採鉱技術 牧田大学 天野 粉三 2~2(1981)76 7日 表が国上がける石灰石鉱床の需天採掘について 小野田セメント(株) 神風 浸金 2~2(1981)76 7年末 東京温業大学 山崎 別・2~3(1981)38 7年末 上半一としての木材 京都大学 地橋 男・2~3(1981)38 30 資源・エネルギーとしての木材 京都大学 地橋 寛彦 2~3(1981)38 31 資源・エネルギーとしての木材 京都大学 総島 哲夫 2~3(1981)38 31 資源・エネルギーとしての木材 京都大学 総局 15 2~3(1981)58 32 国産化微生物のエネルギー化・の応用 東京工業大学 総局 15 2~3(1981)58 33 資源・エネルギーと企産業権造一世界経済の視点から一 東京業業大学 村田 15 3~2・3(1981)58 48 担当のアイン・上・経済・エネルギーシステム 48 上ネルギーと産業構造一世界経済の視点から一 東京主教大学 室田 歳彦 2~4(1981)38 48 エネルギー・と産業構造一世界経済の視点から一 東京芸学 ギ田 信彦 2~4(1981)38 48 エネルギー・と産業構造一世界経済の視点から一 東京芸学 ギ田 信彦 2~4(1981)38 49 エネルギー・アナリンスとその方法 東京学 室田 泰弘 2~4(1981)38 40 土本ルギー・アナリンスとその方法 東京学 室田 泰弘 2~4(1981)38 40 土本ルギー・アナリンスとその方法 東京学 室田 泰弘 2~4(1981)59 41 技術と教養技術 海工大学 室田 泰弘 2~4(1981)50 41 技術と教養技術 海工大学 室田 泰元 2~5(1981)51 42 木の肝の肝の疾病 (株) 電力・中央研究所 福澤 久 2~5(1981)51 42 木のアランとを防疾 船崎技術研究所 福彦 東戸 2~5(1981)51 43 エスルン学・歴族 船鼓技術研究所 福彦 幸岡 2~5(1981)51 44 エスルン学・プロ機様 川崎生工業(株) 坂井 正庫 2~5(1981)51 45 エスルン学・プロ機様 川崎生工業(株) 坂井 正庫 2~5(1981)51 46 エスルン学・プロ機様 川崎生工業(株) 加藤 幸 2~5(1981)51 47 フェルが発展 船鼓技術研究所 第二 東原 2~5(1981)51 48 大のアランを構作の発作・ガス化技術 第和大学 武庫 第二 2~5(1981)52 48 大のアランを構作の発作・ガス化技術 第和大学 武庫 第二 2~5(1981)52 48 大のアランを構作の発作・ガス化技術 第和大学 武庫 第二 2~5(1981)52 51 石炭の高度液化・ガス化技術 東京 東京 2~5(1981)52 51 石炭の高度液化・ガス化技術 東京 英東大学 高年 第二 2~5(1981)52 51 石炭の高度液化・ガス化技術 東京 東京 2~5(1981)52 51 石炭の高度液化・ガス化技術 東京 英東大学 武庫 2~5(1981)52 51 石炭の高度液化・ガス化技術 東京 英東大学 武庫 2~5(1981)53 51 石炭の高度液化・ガス化技術 東京 英東大学 武庫 2~5(1981)53 51 石炭の高度液化・ガス化技術 東京 第二 2~5(1981)53 51 石炭の間接続に関係 第二 2~5(1981)53 51 石炭の高度液体 第二 2~5(1981)53 51 石炭の		題目	所属	執筆	筆者	VolNo. (発行年)	頁
(1) マンガン/ジュールの開発の概要 公舎質薄研究所 伊藤 福夫 2~2 (1981) 29 (2) マンガン/ジュールの採掘技術について 公舎預薄研究所 伊藤 福夫 2~2 (1981) 28 (3) 海水からの技態料資源の回収について 大分工来大学 古屋+ 59 2~2 (1981) 31 (4) パグテリアを利用した低品位鉱よりの金属資源の回収 京都大学 伊藤 一郎 2~2 (1981) 51 (5) 採炭技術と懐安技術 外田大学 天野 第二 2~2 (1981) 70 (6) 金属磁物投源の厌紅技術 外田大学 大場 東北 2~2 (1981) 70 (7) 我が国に於ける石灰石鉱床の需実採掘について 小野田セメント(株) 神山 食之 2~2 (1981) 70 (7) 我が国に於ける石灰石鉱床の需実採掘について 小野田セメント(株) 神山 食之 2~2 (1981) 70 (7) 技が国に於ける石灰石鉱床の需大採掘について 小野田セメント(株) 神山 食之 2~2 (1981) 70 (7) 技が国に於ける石灰石鉱床の需大採掘について 小野田セメント(株) 神山 食之 2~2 (1981) 70 (7) 技が国に放けるのエネルギー化 (8) 石油植物の沢素 東京黒木学 近藤 表生 2~3 (1981) 38 (7) 東京性植物のカネルギー化 (9) 海洋性植物のカネルギー利用 東京エ大学 山林 贯身 2~3 (1981) 38 (7) 東の北州学・七七〇の木村 京都大学 総島 宿夫 2~3 (1981) 38 (7) 東の北州学・七七〇の木村 京都大学 総島 宿夫 2~3 (1981) 38 (8) 京原土化・七七〇の木村 京都大学 総局 宿夫 2~3 (1981) 38 (8) 京原土化・七生産農業の生物学的基礎 東京黒素大学 村田 吉男 2~3 (1981) 57 (6) エネルギーと建産業の生物学的基礎 東京黒素大学 村田 吉男 2~3 (1981) 57 (6) エネルギーと建産業の生物学的基礎 東京黒素大学 村田 吉男 2~3 (1981) 57 (6) エネルギーとと酸情投資 宮山大学 増田 信彦 2~4 (1981) 38 (4) エネルギーとと酸情投資 宮山大学 増田 信彦 2~4 (1981) 38 (4) エネルギーとと酸情投資 宮山大学 郷田 信彦 2~4 (1981) 38 (4) エネルギーとと酸情投資 宮山大学 郷田 泰弘 2~4 (1981) 38 (5) 日本におけるエネルギー・モデル開発の現状 埼玉大学 郷 泰弘 2~4 (1981) 38 (5) 日本におけるエネルギー・モデル開発の現状 埼玉大学 郷 泰弘 2~4 (1981) 32 (7) 接触燃焼技術 海球経技術 海球経技術 (株)日立製作所 石橋 洋 2~5 (1981) 57 (7) 接触燃焼皮の研究開発 (株)和方(株) 東京大学 第 泰山 2~5 (1981) 57 (6) 乙が透りが洗りる (株)日立製作所 石橋 洋 2~5 (1981) 57 (6) 石炭の内が水化燃焼 (株)日立製作所 石橋 洋 2~5 (1981) 57 (6) 石炭の内が水化燃焼 (株)甲が製鋼所 森 第 2~5 (1981) 58 (6) 石炭のカが水化焼焼 (株)日立製作 石橋 2~2 (1981) 59 (6) 石炭のカが水化焼焼 (株)日立製作所 石橋 2~2 (1981) 59 (6) 石炭の水化焼焼 (株)日立製作 石橋 2~2 (1981) 59 (6) 石炭の水化・ガス化枝柳 (株)和戸製鋼所 森 第 2~5 (1981) 59 (6) 石炭液砂化・ガス化枝柳 (株)和戸製鋼所 森 第 2~5 (1981) 59 (6) 石炭液砂化・ガス化枝柳 (株)和戸製鋼所 森 第 2~5 (1981) 59 (6) 石炭の液体が が ス度 2~5 (1981) 59 (6) 石炭の液体が が ス度 2~5 (1981) 59 (6) 石炭液砂化・ガス化枝柄 (株)和戸製鋼所 森 第 2~5 (1981) 59 (6) 石炭液砂化・ガス化枝柄 (株)和戸製研究所 森 第 2~5 (1981) 59 (6) 石炭液砂化・ガス化枝柄 (株)和戸製研究所 森 第 2~5 (1981) 59 (6) 石炭液砂化・ガス化枝柄 (株)和戸製作 石橋 2~2 (1981) 59 (6) 石炭液砂化・ガス化焼焼 (株)和戸製作 石橋 2~2 (1981) 59 (6) 石炭の焼焼 (株)和戸製作 石橋 2~2 (1981) 59 (6) 石炭の炭液砂化・ガス化炭液砂化・ガス化炭液砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガス化砂化・ガ	[特:	集]採鉱技術からみた資源開発					
海水からの核燃料資源の回収について	(1)	マンガンノジュールの開発の概要	公害資源研究所	伊藤	福夫	2-2 (1981)	29
(4) パクテリアを利用した低品位鉱よりの金属資源の回収 京都大学 伊藤 一郎 2-2 (1981) 51 (5) 接皮技術 公書資源研究所 大場 東美 2-2 (1981) 51 (6) 全属鉱物質の 尺銭拡技術 秋田大学 天野 和三 2-2 (1981) 76 (7) 投が国に於ける石灰石鉱床の露天採掘について 小野田セメント(株) 神山 茂澄 2-2 (1981) 76 (7) 投稿券 1 機分変の 工夫ルギー化 (7) 石油植物の 2 大水 ギー化 (7) 石油植物の 2 大水 ギール 1 大阪 中華 1 大阪 中華 1 大阪 中華 1 大阪 中華 1 大阪 1 大阪 中華 1 大阪 1 大	(2)	マンガンノジュールの採掘技術について	公害資源研究所	伊藤	福夫	2-2 (1981)	38
(5) 探検技術と保安技術 公書資語研究所 大場 変美 2-2 (1981) 58 (6) 金属鉱物資源の採験技術	(3)	海水からの核燃料資源の回収について	大分工業大学	古屋	中芳男	2-2 (1981)	45
(5) 探検技術と保安技術 公書資語研究所 大場 変美 2-2 (1981) 58 (6) 金属鉱物資源の採験技術	(4)		京都大学	伊藤	一郎		51
(6) 金属鉱物資源の保鉱技術	(5)		公害資源研究所	大場	重美	2-2 (1981)	58
(8) 石油技術からみた地下資源開発 秋田大学 田中 正三 2-2 (1981) 76 76 76 76 76 76 76 76	(6)		秋田大学	天野	勳三	2-2 (1981)	63
(8) 石油技術からみた地下資源開発 秋田大学 田中 正三 2-2 (1981) 76 76 76 76 76 76 76 76	(7)	我が国に於ける石灰石鉱床の露天採掘について	小野田セメント(株)	神山	眞澄	2-2 (1981)	70
持株 植物資源のエネルギー化 10 石油植物の探索 東京農業大学 辺崎 男生 2-3 (1981) 28 次 海洋性植物のエネルギー利用 東京工業大学 超島 哲夫 2-3 (1981) 38 次 元ネルギーとしての木材 東京工業大学 世紀 武彦 2-3 (1981) 31 公園 注版性物のエネルギーとしての木材 東京工業大学 世紀 武彦 2-3 (1981) 51 公司 (1981) 32 次 元本ルギーとしての木材 東京工業大学 世紀 武彦 2-3 (1981) 51 公司 (1981) 32 次 元本ルギーとして映画体学的基礎 東京農業大学 村田 吉男 2-3 (1981) 57 次 元本ルギーと企業構造 世界経済の視点から 慶応義塾大学 尾崎 厳 2-4 (1981) 32 公司 (1	(8)		秋田大学	田中	正三		76
11 石油植物の探索 東京農業大学 近隣 典生 2-3(1981) 28 22 海洋性植物のエネルギー利用 東京工業大学 近崎 升 2-3(1981) 38 表面大学 成島 哲夫 2-3(1981) 57 表面大学 成島 哲夫 2-3(1981) 57 表面大学 成島 西北 西北 西北 西北 西北 西北 西北 西						, ,	
22 海洋性植物のエネルギー利用 東京工業大学 山崎	(1)		東京農業大学	近藤	典生	2-3 (1981)	28
(3) 資源・エネルギーとしての木材	(2)			山崎	升		33
(4) 総質のアルコール醗酵 大阪市立大学 山本 武彦 2-3 (1981) 44 (5) 固定化微生物のエネルギー化への応用 東京工業大学 軽節 征夫 2-3 (1981) 51 (6) エネルギー生産農業の生物学的基礎 東京農業大学 相間 信男 2-3 (1981) 57 (神養)エネルギー経済・エネルギーシステム (1) エネルギーと産業構造一世界経済の視点から一 慶応義塾大学 尾崎 巌 2-4 (1981) 23 (2) 枯渇性資源と経済成長 富山大学 増田 信彦 2-4 (1981) 38 (3) エネルギー・と設備投資 名古屋大学 木下 陽一 2-4 (1981) 38 (4) エネルギー・と設備投資 名古屋大学 木下 第 2-4 (1981) 38 (3) 日本におけるエネルギー・モデル開発の現状 埼玉大学 室田 泰弘 2-4 (1981) 50 (6) 地域エネルギー・モデル開発の現状 埼玉大学 室田 泰弘 2-4 (1981) 60 (1981) 18 (1	(3)			越島	哲夫		38
(8) 固定化微生物のエネルギー化への応用 東京工業大学 軽部 征夫 2-3 (1981) 51	(4)		大阪市立大学	山本	武彦		44
(6) エネルギー生産農業の生物学的基礎 東京農業大学 村田 吉男 2-3 (1981) 57 [特集] エネルギー経済・エネルギーシステム (1) エネルギーと産業構造 世界経済の視点から 慶応義塾大学 尾崎 厳 2-4 (1981) 32 (2) 枯渇性資源と経済成長 富山大学 増田 信彦 2-4 (1981) 32 (3) エネルギー・アナリシスとその方法 東京大学 茅 陽一 2-4 (1981) 45 (4) エネルギー・アナリシスとその方法 東京大学 茅 陽一 2-4 (1981) 53 (6) 地域エネルギー・モデル開発の現状 埼玉大学 宮 泰弘 2-4 (1981) 53 (6) 地域エネルギー・モデル開発の現状 埼玉大学 宮 泰弘 2-4 (1981) 60 [特集) 新微焼技術 (1) 接触燃焼法の研究開発 (財)電力中央研究所 福澤 久 2-5 (1981) 18 (2) ポイラ用ガス噴霧式オイルパーナ ポルカノ(株) 金森 聖二 2-5 (1981) 18 (3) 重質油燃焼の諸特性 三菱重工業(株) 坂井 正康 2-5 (1981) 32 (4) エマルジョン燃焼 (株)神戸製鋼所 田村 節夫 2-5 (1981) 34 (6) COM燃焼 (株)神戸製鋼所 田村 節夫 2-5 (1981) 58 (6) Gのガス化燃焼 (株)神戸製鋼所 田村 節夫 2-5 (1981) 59 (7) 微粉炭燃焼 (財)石炭技術研究所 玉賞 池 2-5 (1981) 59 (7) 微粉炭燃焼 (財)石炭技術研究所 玉賞 池 2-5 (1981) 66 (持集)石炭液化に関する課題 (株)神戸製鋼所 森 二 2-6 (1981) 66 (持集)石炭の液化・ガス化技術 (財)石炭技術研究所 森 二 2-6 (1981) 40 (1) 炎素養資源の高度対用 京都大学 武上 善信 2-6 (1981) 40 (1) 炎素養育源の高度対用 京都大学 武上 善信 2-6 (1981) 40 (1) 炎素養育源の高度対用 京都大学 武上 善信 2-6 (1981) 40 (1) 炎素養育源の高度対用 京都大学 武上 善信 2-6 (1981) 40 (2) 石炭の直接液化 北海道大学 真田 雄三 2-6 (1981) 40 (4) 石炭の直接液化の触媒 北海道大学 真田 雄三 2-6 (1981) 40 (4) 石炭の直接液化の触媒 北海道大学 真田 雄三 2-6 (1981) 40 (4) 石炭の直接液化の触媒 北海道大学 真田 雄三 2-6 (1981) 40 (4) 石炭直接液化の触媒 北海道大学 真田 雄三 2-6 (1981) 40 (4) 石炭直接液化の触媒 北海道大学 真田 雄三 2-6 (1981) 40	(5)			軽部			51
(6) エネルギー生産農業の生物学的基礎 東京農業大学 村田 吉男 2-3 (1981) 57 【特集】エネルギーを辞・エネルギーシステム (1) エネルギーと産業構造 世界経済の視点から	(-)				.—.	_ (,,,,,	•
特集 エネルギー経済・エネルギーシステム	(6)	エネルギー生産農業の生物学的基礎	東京農業大学		• •	2-3 (1981)	57
(1) エネルギーと産業構造一世界経済の視点から一 慶応義塾大学 尾崎 巌 2-4 (1981) 23 (22) 枯渇性資源と経済成長 富山大学 増田 信彦 2-4 (1981) 32 (33) エネルギーと設備投資 名古屋大学 木下 宗七 2-4 (1981) 38 東京大学 茅 陽一 2-4 (1981) 35 (44) エネルギー・アナリシスとその方法 東京大学 茎田 泰弘 2-4 (1981) 53 (65) 日本におけるエネルギー・モデル開発の現状 埼玉大学 室田 泰弘 2-4 (1981) 53 (66) 地域エネルギー 大阪大学 鈴木 胖 2-4 (1981) 50 (77) 接触燃焼技術 (財)電力中央研究所 福澤 久 2-5 (1981) 18 万原 葉己 2-5 (1981) 24 (1981) 24 (1981) 25 (1981) 24 (1981) 25 (1981) 24 (1981) 25 (1981) 2			NAME OF THE PROPERTY OF		L))	2 0 (1001)	0,
(2) 枯渇性資源と経済成長 富山大学 増田 信彦 2-4 (1981) 32 (33) エネルギーと設備投資 名古屋大学 木下 宗七 2-4 (1981) 38 (44) エネルギー・アナリシスとその方法 東京大学 茅 陽- 2-4 (1981) 45 哲央 第五大学 室田 泰弘 2-4 (1981) 53 (86) 地域エネルギー・モデル開発の現状 埼玉大学 室田 泰弘 2-4 (1981) 60 (87) 大阪大学 鈴木 胖 2-5 (1981) 18 で 2-5 (1981) 24 (1981) 24 (1981) 25	(1)		慶応義塾大学	尾崎	巌	2-4 (1981)	23
(3) エネルギーと設備投資 名古屋大学 末	(2)						
(4) エネルギー・アナリシスとその方法 東京大学 茅 陽一 2-4 (1981) 45	(3)						
# 手塚 哲央	(4)						
(5) 日本におけるエネルギー・モデル開発の現状 埼玉大学 室田 泰弘 2-4 (1981) 53 (6) 地域エネルギー 大阪大学 鈴木 胖 2-4 (1981) 60 (月株集)新燃焼技術 (別)電力中央研究所 福澤 久 2-5 (1981) 18	(1)					2 1 (1001)	10
(6) 地域エネルギー 大阪大学 鈴木 胖 2-4 (1981) 60 (7) 接触燃焼技術 (財)電力中央研究所 福澤 久 2-5 (1981) 18	(5)	日本におけるエネルギー・モデル開発の現状	埼玉大学			2-4 (1981)	53
接触燃焼法の研究開発	(6)					, ,	
(財)電力中央研究所 福澤 久 2-5 (1981) 18	,		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	¥ارداھ	"1	2 4 (1001)	00
(2) ポイラ用ガス噴霧式オイルバーナ ポルカノ(株) 金森 聖二 2-5 (1981) 24	(1)		(財)雷力中央研究所	福澤	な	2-5 (1981)	18
(2) ボイラ用ガス噴霧式オイルバーナ ボルカノ(株) 金森 聖二 2-5 (1981) 24 " 伊藤 博一" (7) で 博藤 博一" (8) 25 (1981) 32 (4) エマルジョン燃焼 船舶技術研究所 熊倉 孝尚 2-5 (1981) 38 (5) 石炭のガス化燃焼 (株) 日立製作所 石橋 洋二 2-5 (1981) 44 (6) COM燃焼 (株) 神戸製鋼所 田村 節夫 2-5 (1981) 51 " 成田 貴一" 前川 自己大" 前川 野部 享 第本 富雄 (7) 微粉炭燃焼 川崎重工業(株) 加藤 幸三 2-5 (1981) 59 (8) 石炭流動層燃焼技術 (財) 石炭技術研究所 玉貫 滋 2-5 (1981) 66 [持集] 石炭の液化・ガス化技術 (財) 石炭技術研究所 玉貫 滋 2-5 (1981) 26 (2) 石炭液化に関する課題 (株) 神戸製鋼所 森 憲二 2-6 (1981) 32 (3) 石炭の間接液化プロセス 東京大学 冨永 博夫 2-6 (1981) 40 (4) 石炭の直接液化 (4) 石炭の直接液化 (4) 石炭の直接液化 (4) 石炭の直接液化 (5) 石炭直接液化の触媒 北海道大学 貝田 雄三 2-6 (1981) 46 (5) 石炭直接液化の触媒 北海道大学 日部 浩三 2-6 (1981) 54 (6) 石炭の接触ガス化 東北大学 冨田 彰 2-6 (1981) 54	(,,	12/12/11/70/12 57 51 70 70 70 70 70 70 70 70 70 70 70 70 70				2 0 (1001)	
(3) 重質油燃焼の諸特性 三菱重工業(株) 坂井 正康 2-5 (1981) 32 (4) エマルジョン燃焼 船舶技術研究所 熊倉 孝尚 2-5 (1981) 38 (5) 石炭のガス化燃焼 (株)日立製作所 石橋 洋二 2-5 (1981) 44 (6) COM燃焼 (株)神戸製鋼所 田村 節夫 2-5 (1981) 51	(2)	ボイラ田ガス噴霧式オイルバーナ				2-5 (1981)	24
33	(2)	11. 1 271172 X 256 495 7671 170 X				2 0 (1001)	27
(4) エマルジョン燃焼 船舶技術研究所 熊倉 孝尚 2-5 (1981) 38 (5) 石炭のガス化燃焼 (株)日立製作所 石橋 洋二 2-5 (1981) 44 (6) COM燃焼 (株)神戸製鋼所 田村 節夫 2-5 (1981) 51 (水 神戸製鋼所 明月 京都大学 武上 善信 2-6 (1981) 66 (水 神戸製鋼所 京都大学 武上 善信 2-6 (1981) 26 (大 神戸製鋼所 森 憲二 2-5 (1981) 39 (水 神戸製鋼所 森 憲二 2-6 (1981) 39 (本) 神戸製鋼所 森 憲二 2-6 (1981) 30 (本) 神戸製鋼所 森 憲二 2-6 (1981) 40 (本) 石炭の間接液化の触媒 北海道大学 真田 雄三 2-6 (1981) 46 (本) 石炭の接触ガス化 北海道大学 国田 浩三 2-6 (1981) 54 (海 石炭の接触ガス化 東北大学 富田 彰 2-6 (1981) 61	(3)	重質油燃焼の諸特性				2-5 (1981)	32
(5) 石炭のガス化燃焼 (株) 日立製作所 石橋 洋二 2-5 (1981) 44 (6) COM燃焼 (株) 神戸製鋼所 田村 節夫 2-5 (1981) 51					-		
(6) COM燃焼 (株)神戸製鋼所 田村 節夫 2-5 (1981) 51							
(7) 微粉炭燃焼 川崎重工業(株) 加藤 幸三 2-5 (1981) 59 (8) 石炭流動層燃焼技術 (財)石炭技術研究所 玉貫 滋 2-5 (1981) 66 [特集]石炭の液化・ガス化技術 (財)石炭技術研究所 玉貫 滋 2-5 (1981) 26 (2) 石炭液化に関する課題 (株)神戸製鋼所 森 憲二 2-6 (1981) 32 (3) 石炭の間接液化プロセス 東京大学 冨永 博夫 2-6 (1981) 40 (4) 石炭の直接液化 北海道大学 真田 雄三 2-6 (1981) 46 (5) 石炭直接液化の触媒 北海道大学 国部 浩三 2-6 (1981) 54 (6) 石炭の接触ガス化 東北大学 富田 彰 2-6 (1981) 61							
## 前川 昌大 ## 出口 幹郎 ## 出口 幹郎 ## 1	(0)	O M Kill No.				2 0 (1001)	01
(7) 微粉炭燃焼 川崎重工業(株) 加藤 幸三 2-5 (1981) 59 (8) 石炭流動層燃焼技術 (財) 石炭技術研究所 玉貫 滋 2-5 (1981) 66 [特集] 石炭の液化・ガス化技術 (財) 石炭技術研究所 玉貫 滋 2-6 (1981) 26 (2) 石炭液化に関する課題 (株)神戸製鋼所 森 憲二 2-6 (1981) 32 (3) 石炭の間接液化プロセス 東京大学 冨永 博夫 2-6 (1981) 40 (4) 石炭の直接液化 北海道大学 真田 雄三 2-6 (1981) 46 (5) 石炭直接液化の触媒 北海道大学 田部 浩三 2-6 (1981) 54 (6) 石炭の接触ガス化 東北大学 富田 彰 2-6 (1981) 61			"				
(7) 微粉炭燃焼 川崎重工業(株) 加藤 幸三 2-5 (1981) 59 (8) 石炭流動層燃焼技術 (財)石炭技術研究所 玉貫 滋 2-5 (1981) 66 [特集]石炭の液化・ガス化技術 (1) 炭素系資源の高度利用 京都大学 武上 善信 2-6 (1981) 26 (2) 石炭液化に関する課題 (株)神戸製鋼所 森 憲二 2-6 (1981) 32 (3) 石炭の間接液化プロセス 東京大学 冨永 博夫 2-6 (1981) 40 (4) 石炭の直接液化 北海道大学 真田 雄三 2-6 (1981) 46 (5) 石炭直接液化の触媒 北海道大学 田部 浩三 2-6 (1981) 54 ル 服部 英 (6) 石炭の接触ガス化 東北大学 富田 彰 2-6 (1981) 61			"				
(7) 微粉炭燃焼 川崎重工業(株) 加藤 幸三 2-5 (1981) 59 (8) 石炭流動層燃焼技術 (財)石炭技術研究所 玉貫 滋 2-5 (1981) 66 [特集]石炭の液化・ガス化技術 (1) 炭素系資源の高度利用 京都大学 武上 善信 2-6 (1981) 26 (2) 石炭液化に関する課題 (株)神戸製鋼所 森 憲二 2-6 (1981) 32 (3) 石炭の間接液化プロセス 東京大学 冨永 博夫 2-6 (1981) 40 (4) 石炭の直接液化 北海道大学 真田 雄三 2-6 (1981) 46 (5) 石炭直接液化の触媒 北海道大学 田部 浩三 2-6 (1981) 54 (6) 石炭の接触ガス化 東北大学 富田 彰 2-6 (1981) 61							
(8) 石炭流動層燃焼技術 (財)石炭技術研究所 玉貫 滋 2-5 (1981) 66 [特集]石炭の液化・ガス化技術 (1) 炭素系資源の高度利用 (2) 石炭液化に関する課題 (株)神戸製鋼所 森 憲二 2-6 (1981) 32 (3) 石炭の間接液化プロセス (4) 石炭の直接液化 (5) 石炭直接液化の触媒 (6) 石炭の接触ガス化 (7) 服部 英 (8) 2-5 (1981) 66 (財) 石炭技術研究所 玉貫 滋 2-5 (1981) 66 (財) 石炭技術研究所 玉貫 滋 2-5 (1981) 66 (財) 石炭技術研究所 玉貫 滋 2-6 (1981) 26 (オンス・ロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(3)	ANL NA LL J. A. L. A.				0 5 (1001)	50
【特集] 石炭の液化・ガス化技術 (1) 炭素系資源の高度利用 京都大学 武上 善信 2-6 (1981) 26 (2) 石炭液化に関する課題 (株)神戸製鋼所 森 憲二 2-6 (1981) 32 (3) 石炭の間接液化プロセス 東京大学 冨永 博夫 2-6 (1981) 40 (4) 石炭の直接液化 北海道大学 真田 雄三 2-6 (1981) 46 (5) 石炭直接液化の触媒 北海道大学 田部 浩三 2-6 (1981) 54 (6) 石炭の接触ガス化 東北大学 富田 彰 2-6 (1981) 61							
(1) 炭素系資源の高度利用 京都大学 武上 善信 2-6 (1981) 26 (2) 石炭液化に関する課題 (株)神戸製鋼所 森 憲二 2-6 (1981) 32 (3) 石炭の間接液化プロセス 東京大学 冨永 博夫 2-6 (1981) 40 (4) 石炭の直接液化 北海道大学 真田 雄三 2-6 (1981) 46 (5) 石炭直接液化の触媒 北海道大学 田部 浩三 2-6 (1981) 54 (6) 石炭の接触ガス化 東北大学 富田 彰 2-6 (1981) 61		2	(財) 石灰技術研究所	土買	滋	2-5 (1981)	66
(2) 石炭液化に関する課題 (株)神戸製鋼所 森 憲二 2-6 (1981) 32 (3) 石炭の間接液化プロセス 東京大学 冨永 博夫 2-6 (1981) 40 (4) 石炭の直接液化 北海道大学 真田 雄三 2-6 (1981) 46 (5) 石炭直接液化の触媒 北海道大学 田部 浩三 2-6 (1981) 54 (6) 石炭の接触ガス化 東北大学 富田 彰 2-6 (1981) 61				<u> </u>	¥	0.0(4003)	•
(3)石炭の間接液化プロセス東京大学 冨永 博夫 2-6 (1981) 40(4)石炭の直接液化北海道大学 真田 雄三 2-6 (1981) 46(5)石炭直接液化の触媒北海道大学 田部 浩三 2-6 (1981) 54(6)石炭の接触ガス化東北大学 富田 彰 2-6 (1981) 61							
(4) 石炭の直接液化北海道大学 真田 雄三 2-6 (1981) 46(5) 石炭直接液化の触媒北海道大学 田部 浩三 2-6 (1981) 54(6) 石炭の接触ガス化東北大学 富田 彰 2-6 (1981) 61							
(5) 石炭直接液化の触媒北海道大学 田部 浩三 2-6 (1981) 54"服部 英(6) 石炭の接触ガス化東北大学 富田 彰 2-6 (1981) 61							
(6) 石炭の接触ガス化ポート 服部 英東北大学 富田 彰 2-6 (1981) 61							
(6) 石炭の接触ガス化 東北大学 富田 彰 2-6(1981) 61	(5)	石灰 直接液化の無媒				2-6 (1981)	54
	(5)						
"工工","大","大","大","大","大","大","大","大","大","大	(6)	石灰の接触カス化				2-6 (1981)	61
			"	玉井	康勝		

	題目	所 属	執筆	筆者	Vol.−No. (発行年)	頁
(7)	石炭ガス化に関する諸問題	大阪瓦斯(株)	富久	登	2-6 (1981)	68
[特:	<i>集]ソーラーハウス</i>					
(1)	ソーラーハウスの将来	早稲田大学	木村	建一	3-1 (1982)	51
(2)	集合住宅ソーラーハウス	東海大学	田中	俊六	3-1 (1982)	55
(3)	パッシブソーラーハウスー住宅設計の立場からー	建設省建築研究所	小玉	祐一郎	3-1 (1982)	62
(4)	北海道のソーラーハウスについて	北見工業大学	金山	公夫	3-1 (1982)	70
(5)	ソーラーハウスの冷暖房・給湯システムの熱特性	三洋電機(株)	日野	谷勝弘	3-1 (1982)	77
(6)	ソーラーハウスの太陽電池利用システム	シャープ(株)	外村	俊弥	3-1 (1982)	84
	集]発電用動力プラント				, ,	
(1)	我が国における電源開発の展望	資源エネルギー庁	内田	二郎	3-2 (1982)	16
(2)	LNG焚発電プラントの諸問題	石川島播磨重工業(株)	牧野	啓二	3-2 (1982)	23
		"	小澤	宏		
		"	近藤	久義		
(3)	石炭焚発電プラント技術の現状と将来	電源開発(株)	中林	恭之	3-2 (1982)	30
(4)	トータルシステムとしての発電プラントの効率化	高効率ガスタービン技術研究組合	佐野	恵保	3-2 (1982)	38
(5)	石炭ガス化複合発電	三菱重工業(株)	山本	光男	3-2 (1982)	45
(-,		"	仙石	忠正	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		"	杉山	晃		
		"		紀一郎		
(6)	地熱発電プラント	富士電機製造(株)	湖崎	一俊	3-2 (1982)	54
(7)	火力発電プラントの計算機制御の現状と将来展望	(株)日立製作所	佐藤	美雄	3-2 (1982)	62
(,,	ブランロセン フント ひ 日 弁 版 明 声 の の 版 こ 日 外 版 主	"	西村	昭	0 2 (1002)	-
「特 :	集]グリーンエナジー計画					
(1)	グリーンエナジーの開発と計画	農林水産省	唐橋	需	3-3 (1982)	28
(2)	エネルギーの分布と農業利用	農業技術研究所	久保	祐雄	3-3 (1982)	34
(3)	植物による物質固定効率の向上	農業技術研究所	高橋	保夫	3-3 (1982)	39
(4)	農業生産の場におけるエネルギーの流れと改善	北海道農業試験場	嶋田	饒	3-3 (1982)	47
(5)	農業用熱源・動力源としての自然エネルギーの利用		千葉	豪	3-3 (1982)	
	集]電力システムと電力機器の省エネルギー					
(1)	電力システムにおける省エネルギーの現状と展望	工業技術院	松田	泰	3-4 (1982)	11
(2)	発電設備における省エネルギー	東京芝浦電気(株)	河野	武史	3-4 (1982)	16
(3)	省エネルギー型の新発電方式	東京芝浦電気(株)	萩本	和男	3-4 (1982)	23
(4)	電力貯蔵方式における省エネルギー	三菱電機(株)	河村	寿三	3-4 (1982)	30
(5)	送変電設備における省エネルギー	(株)日立製作所	菅野	弘道	3-4 (1982)	36
(6)	電力系統運用における省エネルギー	関西電力(株)	西森	寿郎	3-4 (1982)	42
	集]資源探査の現状と将来				, ,	
(1)	物理探査の概要	京都大学	吉住	永三郎	3-5 (1982)	21
(2)	石油・天然ガスの探査	アブタビ石油(株)	百瀬		3-5 (1982)	27
(3)	金属鉱床の探査	大手開発(株)	服部	旭	3-5 (1982)	33
(4)	核燃料の探査				(,	
, ,		動力炉・核燃料開発事業団	角田	晴信	3-5 (1982)	40
(5)	地下水の探査	川崎地質(株)	柴藤	喜平	3-5 (1982)	46
(6)	地熱資源の探査					
. ,		日鉄鉱コンサルタント(株)	安達	幸夫	3-5 (1982)	50
(7)	海底鉱物資源の探査	金属鉱業事業団		川淳	3-5 (1982)	57
(8)	地下構造の探査	応用地質調査事務所	今井		3-5 (1982)	66
	集]太陽光発電技術	10 / 10 / 20 gargina (1 · 1/0) / / /			(- •
(1)	本3へ6300000000000000000000000000000000000	術一 大阪大学	浜川	圭弘	3-6 (1982)	19
(2)	低コスト化を目指す結晶性シリコンー太陽電池の研		辻	高輝	3-6 (1982)	28
\ <u>-</u> /		- (- (M)	~-	1-17-	5 5 (1002)	_0

	題目	所属	執	筆者	Vol.−No. (発行年)	頁
(3)	化合物半導体太陽電池の研究開発の状況ー II -VI族を中心	いに 松下電哭産業(株)池上	清治	3-6 (1982)	34
(4)	化合物半導体太陽電池の研究開発の状況ーⅢ-Ⅴ族を中心の			善善則	3-6 (1982)	39
		_				
(5)	アモルファスシリコン太陽電池の進歩	三洋電機(株		三千年	3-6 (1982) 3-6 (1982)	47
(6)	我が国における太陽光発電システムの実例	(株)日立製作所		平1位 順人	3-6 (1982)	54
(7)	海外における太陽光発電技術	東京芝浦電気(株		真太郎	3-6 (1982)	59
(8)	衛星発電をめぐる最近の動向	宇宙科学研究所		信人	3-6 (1982)	63
	第宝光电で30人の取近の動向 <i>集] 今日の水資源問題を考える</i>	于田代子则无 几	1 天汉	后人	3-0 (1962)	03
(1)	<i>乗」するの小負帳向風を考える</i> 水問題の課題とその展望	京都大学	2 岩佐	義朗	4-1 (1983)	26
(2)	が问題の課題とその展生 総合水利用システムの構築	(財)都市調査会		我功良幸	4-1 (1983)	31
(3)	ウォーター・アナリシスの基礎的研究―水需給情報システム			富太郎	4-1 (1983)	39
(4)	- 如小の眼の例とについて、ロ思川ナ/回しして	大阪府土木部			4-1 (1983)	47
(4)	親水空間の創造について―目黒川を例として―	東京大学	本 市川	新	4–1 (1983)	47
(5)	都市空間としての水資源[事例研究]—7.23長崎豪雨災害を		.	ルー	((000)	
(-)	N. J. W. J. BR 26 / D. A. F. T. W. T. T. T. J. J. J. D. A. A. T.	長崎総合科学大学		俊秀	4–1 (1983)	55
(6)	治水・利水・開発保全[事例研究]―地域総合計画の一環と					
		近畿地方建設原	引 大島	康宏	4–1 (1983)	60
	集]重質油対策技術の開発					
(1)	日本における重質油対策の動向	重質油対策技術研究組織		佳宏	4-2 (1983)	26
(2)	重質油の接触分解技術—HOTプロセスの開発—	日本鉱業(株		恒一	4-2 (1983)	35
(3)	重質油の水素化分解技術	出光興産(株) 渡辺	潔	4-2 (1983)	40
(4)	重質油の熱分解技術	大阪ガス(株	吉井	茂雄	4-2 (1983)	47
		,	/ 松井	久次		
(5)	劣質残渣の無公害型燃焼技術	(財)電力中央研究所		治朗	4-2 (1983)	53
(6)	重質油の熱分解と副生コークスを利用した還元鉄製造技術	(株)神戸製鋼所	乔	憲二	4-2 (1983)	60
(7)	人造粘結材製造技術	川崎重工業(株	川真	田直之	4-2 (1983)	68
[特	集]自然の流体エネルギーの開発					
(1)	風力発電の現状と将来	石川島播磨重工業(株	三浦	登志男	4-3 (1983)	30
(2)	プロペラ型風車の動特性	三重大等	≜ 清水	幸丸	4-3 (1983)	36
(3)	貫流水車	横浜国立大学	豊倉 豊倉	富太郎	4-3 (1983)	44
		,	/ 金元	敏明		
(4)	ダリウス形横流水車	九州大	喜 高松	康生	4-3 (1983)	50
(5)	波浪発電に関する基礎研究	東京大学	单 前田	久明	4-3 (1983)	56
(6)	波力発電の研究状況	海洋科学技術センタ-	- 益田	善雄	4-3 (1983)	61
(7)	海流発電の意義と将来展望	元防衛原	声 海法	泰治	4-3 (1983)	67
<i>[特</i>	集]エネルギー貯蔵					
(1)	顕熱蓄熱材を用いた熱エネルギー貯蔵	名古屋工業技術試験所	所 朝比	奈 正	4-4 (1983)	42
		,	/ 小坂	岑雄		
(2)	潜熱蓄熱材を用いた熱エネルギー貯蔵	三菱電機(株	甲斐	潤二郎	4-4 (1983)	48
(3)	化学反応を利用する蓄熱技術	化学技術研究所	所 藤原	一郎	4-4 (1983)	56
(4)	化学物質による光エネルギー貯蔵	京都大学	幸 吉田	善一	4-4 (1983)	65
(5)	新型電池による電力貯蔵システム	電子技術総合研究所	斤 小沢	丈夫	4-4 (1983)	71
(6)	超電導エネルギー貯蔵	大阪大学	卢 村上	吉繁	4-4 (1983)	78
(7)	機械的エネルギー貯蔵-電力貯蔵システムへの応用-	東京電力(株	山本	将人	4-4 (1983)	85
		,	/ 牧	正一		
(8)	超弾性材料によるエネルギー貯蔵	筑波大学	宮崎	修一	4-4 (1983)	90
-				和弘	·	
[特	集]鉄鋼業とエネルギー問題		•	-		
(1)	わが国の鉄鋼業とエネルギー	京都大≜	ዾ 小門	純一	4-5 (1983)	29
(.,	1 · · · — · · · · · · · · · · · · · · ·	ストロドノ 、		.,. 0	. 5 (1000)	

	題目	所属	執	筆者	Vol.−No. (発行年)	頁
(2)	鉄鋼業の省エネルギー	東京工業大学	一色	尚次	4-5 (1983)	35
ν_,	77771 H	北京鉄鋼学院		学忠		
(3)	鉄鋼業における顕熱回収と省エネルギー―スラグの顕野					
(-,		新日本製鐵(株)		展夫	4-5 (1983)	43
		"	榊原	通昭		
(4)	設備,工程合理化による省エネルギー―新日鉄堺製鉄所	fにおけるCC-DRプロセス―				
		新日本製鐵(株)	蜂谷	整生	4-5 (1983)	51
		"	浅野:	総一郎		
		"	佐々	木智久		
(5)	石炭の鉄浴ガス化法	東北大学	徳田	昌則	4-5 (1983)	57
(6)	溶融還元の技術開発の現状	川崎製鉄(株)	鶴岡	一夫	4-5 (1983)	63
(7)	ペレット工場の微粉炭燃焼について	(株)神戸製鋼所	井硲	弘	4-5 (1983)	69
[特	集]C ₁ 化学技術					
(1)	大型工業技術開発制度(大型プロジェクト)における一酸化原	炭素を原料とする				
	基礎化学品の製造法(C1化学)の研究開発状況について	工業技術院	三浦	正俊	4-6 (1983)	30
(2)	石炭からの合成ガスの製造	東京農工大学	平戸	瑞穂	4-6 (1983)	36
(3)	原料ガスの分離精製	化学技術研究所	白田	利勝	4-6 (1983)	44
(4)	C₂—含酸素化合物の直接合成	(財)相模中央化学研究所	市川	勝	4-6 (1983)	51
(5)	エチレングリコール合成の展望と問題点	化学技術研究所	阪東:	憲一郎	4-6 (1983)	58
(6)	酢酸製造プロセスの進歩	ダイセル化学工業(株)	紫垣	明典	4-6 (1983)	61
(7)	合成ガス、メタノールからの炭化水素合成	京都大学	乾	智行	4-6 (1983)	68
(8)	炭酸ガスを原料とするC₁化学	東京大学	井上	祥平	4-6 (1983)	75
		"	村山	英樹		
[特	集]エネルギー経済・エネルギーシステム(その2)					
(1)	流体燃料の将来シナリオ分析	東京大学	茅	陽一	5-1 (1984)	29
		京都大学	手塚	哲央		
(2)	新エネルギー技術の評価のためのエネルギーシステム分)析 電子技術総合研究所	小山	茂夫	5-1 (1984)	36
(3)	石炭エネルギーへの転換と環境影響評価	公害資源研究所	横山	長之	5-1 (1984)	43
(4)	発電所立地の社会経済影響のモデル分析	(財)電力中央研究所	荒井	泰男	5-1 (1984)	51
		"	大河	原 透		
(5)	中小水力発電のエネルギー評価	(財)電力中央研究所	辻	明宏	5-1 (1984)	58
(6)	省エネルギー新都市計画の社会的・経済的評価	北海道大学	山村	悦夫	5-1 (1984)	65
(7)	大潟村におけるエネルギー需要構造と自然エネルギー代	:替の可能性 東京理科大学	奥野	忠一	5-1 (1984)	70
[特	集]原子カエネルギー					
(1)	原子力発電技術の現状	東京工業大学	青木	成文	5-2 (1984)	29
(2)	軽水炉による発電技術—沸騰水型炉—	東京電力(株)	板倉	治成	5-2 (1984)	35
(3)	軽水炉による発電技術―加圧水型炉―	関西電力(株)	根岸	学	5-2 (1984)	42
(4)	新型転換炉(ATR)の開発	動力炉・核燃料開発事業団	明比	道夫	5-2 (1984)	48
		"	小堀	哲雄		
(5)	高速増殖炉(FBR)の開発	動力炉・核燃料開発事業団	野本	昭二	5-2 (1984)	54
		"	奈良	義彦		
(6)	原子力エネルギーの多目的利用	日本原子力研究所	青地	哲男	5-2 (1984)	62
(7)	海外における核燃料サイクルの現状	動力炉・核燃料開発事業団	小泉	益通	5-2 (1984)	68
[特	集]銅資源					
(1)	銅資源をめぐる我が国と国際情勢	資源エネルギー庁	岡本	英樹	5-3 (1984)	24
(2)	世界及びわが国の銅鉱床	東京大学	武内	寿久禰	5-3 (1984)	36
(3)	銅鉱物の分離・選別技術	京都大学	若松	貴英	5-3 (1984)	42
(4)	銅の製錬技術	東北大学	矢沢	彬	5-3 (1984)	47
(5)	黒鉱開発の現状と将来	同和鉱業(株)	熊谷	英男	5-3 (1984)	54

	題目	所 属	執筆者	Vol.−No. (発行年)	頁
(6)	銅及び銅合金の特性と利用	関西大学	村上陽太郎	5-3 (1984)	61
(7)	我が国銅開発の歴史について	(社)日本鉱業会	葉賀七三男	5-3 (1984)	68
	集]水素エネルギー	(IZ/ III MAZICA)KJC 0 = 33	0 0 (1001)	•
(1)	水素エネルギー研究開発の現状と展望	通産省	斎藤 紘一 上原 斎	5-4 (1984)	28
(2)	SPE水電解法による水素の製造	" 大阪工業技術試験所	上原 原 原 息養 栄一	5-4 (1984)	33
(3)	高温高圧アルカリ水溶液電解法による水素の製造	昭和電工(株)	藤巻隆	5-4 (1984)	39
(4)	熱化学及びハイブリッド法による水素製造研究の現状	京都大学	竹原善一郎	5-4 (1984)	47
(5)	太陽光による水素製造法研究の現状―光電極反応、対			0 4 (1004)	7,
(0)	人的人们CS 5小来及是从机力600克的 为电视反应,力	大阪大学	川合 知二	5-4 (1984)	54
(6)	水素吸蔵合金を用いたヒートポンプシステム	積水化学工業(株)	河合 重征	5-4 (1984)	62
(0)	小来 牧風 日並を用いたこ 「ハンノンハーム	(A)	西崎 倫義	J 4 (1304)	02
(7)	気体分離膜による水素の分離・濃縮	" 明治大学	仲川 勤	5-4 (1984)	68
(8)	水素燃料と水素エンジン	(株)大金製作所	柳原 茂	5-4 (1984)	75
(0)	小米旅行と小米エンノン	(4本) 八亚表[F]7]	浜 純	3 4 (1304)	75
「特	<i>集]新材料</i>	·	/ /		
(1)	最近の機能性高分子膜	京都大学	清水 剛夫	5-5 (1984)	31
(2)	耐熱性高分子の進歩	菱電化成(株)	西崎俊一郎	5-5 (1984)	37
(3)	導電性高分子の展望	大阪大学	三川礼	5-5 (1984)	45
(4)	炭素材料の進歩	群馬大学	大谷 杉郎	5-5 (1984)	52
(5)	機械材料としてのセラミックス	京セラ(株)	中原義毅	5-5 (1984)	57
(6)	非晶質物質―セラミックスを中心として―	大阪大学	金丸 文一	5-5 (1984)	63
(0)	THE MEDICAL PROPERTY OF THE PR	"	延谷 宏治	0 0 (1001)	00
[特	集]ヒートポンプ				
(1)	エネルギー問題におけるヒートポンプ -スーパーヒート	・ポンプ・エネルギー集積システ	ムの研究開発	_	
		工業技術院	武松 敏弌	5-6 (1984)	29
(2)	ヒートポンプ用熱媒体の開発動向	ダイキン工業(株)	野口 真裕	5-6 (1984)	36
		"	遠上 尚徳		
(3)	ガスエンジンヒートポンプの現状と将来	東京ガス(株)	小倉 正雄	5-6 (1984)	42
(4)	吸収ヒートポンプの現状と将来	東京三洋電機(株)	太田 治寛	5-6 (1984)	49
(5)	ケミカルヒートポンプの現状と将来	東京農工大	亀山 秀雄	5-6 (1984)	55
(6)	産業分野に於けるヒートポンプの利用とその課題	三菱電機(株)	岩崎 善彦	5-6 (1984)	65
(7)	地域冷暖房へのヒートポンプの応用	東京電力(株)	成田 勝彦	5-6 (1984)	72
		"	前川 哲也		
(8)	寒冷地におけるヒートポンプの利用	工業技術院	後藤藤太郎	5-6 (1984)	78
[5]	周年記念特集]エネルギー・資源の将来展望				
(1)	資源, エネルギー政策と将来	資源エネルギー庁	松田 泰	6-1 (1985)	7
(2)	新エネルギーの開発・利用と将来	工業技術院	宮副 信隆	6-1 (1985)	13
(3)	省エネルギーの開発・利用と将来	工業技術院	仲井真弘多	6-1 (1985)	19
(4)	原子力開発政策と将来	科学技術庁	雨村 博光	6-1 (1985)	25
(5)	資源の総合的利用策と将来	科学技術庁	平山量三郎	6-1 (1985)	30
(6)	海洋資源・エネルギー開発の現状と展望	科学技術庁	宇都宮 誠	6-1 (1985)	35
(7)	資源・エネルギーと環境	環境庁	山岡 通宏	6-1 (1985)	40
(8)	世界におけるエネルギー需給の現状と予測	(財)電力中央研究所	斎藤 雄志	6-1 (1985)	45
(9)	生物資源の現状と研究の方向	農林水産省	田口 俊郎	6-1 (1985)	50
(10)	人工衛星と資源探査	地質調査所	小野 吉彦	6-1 (1985)	54
		"	津 宏治		
(11)	核燃料開発と将来	動力炉・核燃料開発事業団	松原 伸一	6-1 (1985)	59
(12)	我が国における石油資源開発の現状と展望	石油公団	若園 正夫	6-1 (1985)	65

	題目	所属	執筆者	Vol.−No. (発行年)
(13)	我が国における金属鉱物資源調査(広域調査・精密	調査)の現状と展望		
		金属鉱業事業団	中馬 猛順	6-1 (1985) 71
(14)	資源開発と国際協力ーその現状と将来展望ー	国際協力事業団	堀内 伸介	6-1 (1985) 78
(15)	新素材の開発と将来	大阪工業技術試験所	速水 諒三	6-1 (1985) 83
(16)	太陽光発電の現状と展望	東京工業大学	高橋 清	6-1 (1985) 88
(17)	高温熱エネルギーによる直接発電―クローズドサイク	7ルMHD発電— 東京工業大学	塩田 進	6-1 (1985) 92
(18)	核融合の開発と将来	日本原子力研究所	礒 康彦	6-1 (1985) 98
(19)	新しい電池とその応用	大阪市立大学	平井 竹次	6-1 (1985) 103
(20)	ヒートパイプとその省エネルギー技術への応用	古河電気工業(株)	贄川 潤	6-1 (1985) 109
		"	古谷 修一	
		"	小泉 達也	
(21)	舶用ディーゼル主機に関する省エネルギー技術	川崎重工業(株)	中野 英明	6-1 (1985) 114
(22)	ガスタービン複合発電の動向	三菱重工業(株)	舟津 正之	6-1 (1985) 120
(23)	超電導発電機と超電導エネルギー貯蔵	三菱電機(株)	岩本 雅民	6-1 (1985) 125
		"	中村 史朗	
[特]	集]燃料電池			
(1)	燃料電池開発の現状と動向	ムーンライト計画推進室	成松 佑輔	6-2 (1985) 25
(2)	リン酸燃料電池の要素開発	新エネルギー総合開発機構	伊藤 登	6-2 (1985) 32
(3)	リン酸型燃料電池の1,000kW級デモプラント	新エネルギー総合開発機構	永島 正明	6-2 (1985) 38
(4)	オンサイト型燃料電池の開発	東京ガス(株)	菊地 謙一	6-2 (1985) 43
(5)	溶融炭酸塩型燃料電池とその開発状況	大阪工業技術試験所	児玉 皓雄	6-2 (1985) 49
(6)	固体電解質型燃料電池	電子技術総合研究所	佐藤 弘之	6-2 (1985) 55
(7)	燃料電池の排熱利用技術	東京電力(株)	真壁 輝男	6-2 (1985) 62
[特]	集]気体の膜分離技術			
(1)	気体分離用高分子膜の素材設計と特色	明治大学	仲川 勤	6-3 (1985) 20
(2)	プリズム・セパレーターによる水素の分離・回収	日本モンサント(株)	坂田 勝	6-3 (1985) 27
(3)	酸素富化膜とその産業分野への応用	日本酸素(株)	今福 実	6-3 (1985) 33
(4)	新規高分子複合膜による酸素の濃縮	九州大学	梶山 千里	6-3 (1985) 41
(5)	促進輸送膜による気体分離	長崎大学	鹿川 修一	6-3 (1985) 48
		"	川上 満泰	
(6)	固体電解質による気体分離	鳥取大学	岩原 弘育	6-3 (1985) 54
(7)	気体分離膜の医用への展開-人工肺-	京都大学	筏 義人	6-3 (1985) 60
(8)	ポリイミド樹脂膜による気体分離	宇部興産(株)	中村明日丸	6-3 (1985) 67
[特	集]食糧資源			
(1)	世界の食糧資源の現状と将来	京都大学	辻井 博	6-4 (1985) 23
(2)	我が国の食料生産とエネルギー	農林水産省	宇田川武俊	6-4 (1985) 31
(3)	食糧生産と環境	農林水産省	内嶋善兵衛	6-4 (1985) 37
(4)	バイオテクノロジーと作物育種	農林水産省	志賀 敏夫	6-4 (1985) 43
(5)	遺伝資源	(社)農林水産技術情報協会	熊谷甲子夫	6-4 (1985) 50
(6)	食料のポストハーベスト技術とエネルギー問題	農林水産省	梅田 圭司	6-4 (1985) 57
		II .	田島	
(7)	未利用炭水化物資源	農林水産省	貝沼 圭二	6-4 (1985) 61
(8)	家魚化システムのための新しいアプローチ	九州農業試験場	竹澤 武春	6-4 (1985) 67
[特]	集]レアメタルの製造と利用			
(1)	ニオブ・タンタルの製造と用途	関西大学		6-5 (1985) 23
(2)	モリブデン材料の製造とその利用例	東京タングステン(株)	中尾智三郎	6-5 (1985) 31
		<i>II</i>	島谷 幸治	
(3)	ジルコニウム・ハフニウム	日本鉱業(株)	高橋光男	6-5 (1985) 37

〃 宮崎 英男

	題目	所 属	執	筆者	Vol.−No. (発行年)	頁
(4)	アンチモンについて	日本精鉱(株)	安達	肇	6-5 (1985)	43
(5)	リチウム	本荘ケミカル(株)	小林	正夫	6-5 (1985)	50
(6)	チタン	大阪チタニウム製造(株)	,'' 井関	順吉	6-5 (1985)	58
(-)		"	守屋	惇郎	(,,,,,	
(7)	希土類金属	新日本金属化学(株)	西村	新一	6-5 (1985)	64
(8)	シリコン	信越半導体(株)	安部	靖彦	6-5 (1985)	71
(9)	バナジウム―製造と用途―	太陽鉱工(株)	須藤	欽吾	6-5 (1985)	78
[特:	集]大型プロジェクトー自然エネルギー利用(国P	り・国外)の現状と将来ー				
(1)	太陽熱発電	電子技術総合研究所	谷	辰夫	6-6 (1985)	15
(2)	太陽光発電	(財)電力中央研究所	武田	行弘	6-6 (1985)	21
(3)	海水淡水化	名古屋大学	外山	茂樹	6-6 (1985)	27
(4)	海洋温度差発電	電子技術総合研究所	梶川	武信	6-6 (1985)	31
(5)	風力発電	東京大学	東	昭	6-6 (1985)	37
(6)	波浪発電の現状	東京大学	前田	久明	6-6 (1985)	45
(7)	地熱発電	電気通信大学	森	康夫	6-6 (1985)	51
	集]世界のエネルギー需給と各国のエネルギー副	政策				
(1)	IIASAによる長期エネルギー需給予測の比較	埼玉大学	室田	泰弘	7–1 (1986)	44
(2)	世界エネルギー需給の構造分析	(財)電力中央研究所	熊倉	修	7–1 (1986)	48
(3)	サウジアラビアの石油政策とOPEC	(財)日本エネルギー経済研究所	岩﨑	徹也	7–1 (1986)	55
(4)	米国・カナダのエネルギー政策	(財)電力中央研究所		出芳郎	7–1 (1986)	63
(5)	ソ連の原油生産と石油政策	(財)日本エネルギー経済研究所	湯浅	俊昭	7–1 (1986)	69
(6)	西欧諸国のエネルギー政策	(社)海外電力調査会	浅賀	幸平	7–1 (1986)	75
(7)	中国のエネルギー事情	アジア経済研究所	小島	麗逸	7–1 (1986)	82
	集 <i>] 資源・エネルギーから見たバイオテクノロジー</i>		ш.	_ <i>\</i>	7 0 (4000)	
(1)	バイオテクノロジー研究開発の現状と展望	通商産業省		木修一	7–2 (1986)	29
(0)	バノナリマククーの甘醂的研究	// 维维克八叉针料亚克瓦	江口 山内	信彦 愛造	7 0 (1006)	25
(2)	バイオリアクターの基礎的研究	繊維高分子材料研究所	一條	変垣 久夫	7–2 (1986)	35
(3)	酸化反応プロセス代替バイオリアクター	" 京都大学	田中	渥夫	7-2 (1986)	42
(4)	細胞大量培養技術	協和発酵工業(株)	藤吉	宣男	7-2 (1986) 7-2 (1986)	49
(5)	組換えDNA利用技術	東京大学	高橋	秀夫	7-2 (1986)	57
(6)	固定化酵母によるアルコールの連続発酵	宝酒造(株)	花井	四郎	7-2 (1986)	62
	集]金属廃棄物の資源としてのサイクル化	工石足(水)	1671		7 2 (1300)	02
(1)	特殊金属のリサイクリングの現状	(財) クリーン・ジャパン・センター	三藤	利雄	7-3 (1986)	26
(2)	金・銀再利用の現状と将来	京都大学		吉孝	7-3 (1986)	32
(3)	アルミニウムリサイクルの現状と今後	(株)大紀アルミニウム工業所		ェー・ 龍太郎	7–3 (1986)	40
(4)	鉛の再利用の現状と回収	(株)大阪鉛錫精錬所	広瀬		7–3 (1986)	50
(5)	乾電池からの水銀回収問題とその処理	野村興産(株)	兼丸	敞	7-3 (1986)	55
(6)	自動車のスクラップからの金属回収	豊田メタルスクラップ(株)	熊谷	正克	7-3 (1986)	63
(7)	タングステン系使用済触媒からタングステンの	回収 日清鋼業(株)	山内	晃吉	7-3 (1986)	70
[特:	集]熱交換技術					
(1)	高性能対流熱交換技術	東京大学	棚澤	一郎	7-4 (1986)	38
(2)	高性能沸騰凝縮熱交換技術	九州大学	藤田	恭伸	7-4 (1986)	44
		東京工業大学	土方	邦夫		
(3)	高性能高温ガス輻射伝熱技術	東京工業大学	越後	亮三	7-4 (1986)	52
(4)	空調用熱交換技術	(株)日立製作所	伊藤	正昭	7-4 (1986)	60
		n.	千秋	隆雄		
(5)	蒸気発生器における熱交換技術	三菱重工業(株)	岩渕	牧男	7-4 (1986)	69
		"	羽田	寿夫		

	題目	所 属	執筆	筆者	Vol.−No. (発行年)	頁 ——
(6)	スターリング機関における熱交換技術	機械技術研究所	山田	幸生	7-4 (1986)	76
(7)	プレート式熱交換器とその応用製品	(株)日阪製作所	駒野	ェエ 宣夫	7-4 (1986) 7-4 (1986)	83
	プレート式款文換品とての心用袋品 集 <i>]エネルギーの複合利用技術</i>	(休) 口 版 袋 [F7]	為リ王ア	旦人	7-4 (1900)	03
(1)	<i>実」エネルイーの後日が用技術</i> コージェネレーションシステムの現状と展望	(財)日本システム開発研究所	垣田	行雄	7-5 (1986)	28
(2)	コンビナートにおけるエネルギー複合体	大阪大学	鈴木	1」雄	7-5 (1986) 7-5 (1986)	34
(3)	コンピナードにおけるエネルギー後日本 石炭ガス化複合サイクル発電	(財)石炭技術研究所	- 却不 穂積		7-5 (1986) 7-5 (1986)	42
(4)	内燃機関によるコージェネレーション	東京工業大学	垂水	_{里及} 弘夫	7-5 (1986) 7-5 (1986)	42 49
(4)	門が版例によるコーンエイレーンコン	未示工未八十 //	藤井	修二	7 3 (1980)	43
		" (株)フォルム設計事務所	早川			
(5)	燃料電池によるコジェネレーション	東京ガス(株)	高橋	弘文	7-5 (1986)	35
(6)	都市ごみエネルギーの有効利用	東京都立大学	平山	直道	7 -5 (1986)	60
(7)	新川このエネルヤーの有効利用 畜産廃棄物のメタン醗酵によるエネルギー有効利用	大機ゴム工業(株)	小暮	忠宏	7-5 (1986) 7-5 (1986)	66
(7)	田 住 焼 果 彻 の グラン 眺 辞 に よる エ イ ル イ 一 有	日立造船(株)	安藤	心丛 見	7-5 (1960)	00
[特:	集]海洋エネルギー利用技術					
(1)	波浪エネルギーの利用技術と将来性	東京大学	前田	久明	7-6 (1986)	34
(2)	タンデムウエルズタービンの実機性能試験	(株)緑星社	益田	善雄	7-6 (1986)	39
(3)	波力発電ケーソン防波堤の特性	港湾技術研究所	高橋	重雄	7-6 (1986)	44
(4)	航路標識用波力発電システム	海上保安庁	築貫	義人	7-6 (1986)	50
		(株)緑星社	矢作	勝		
(5)	沿岸固定式波力発電システム	富士電機(株)	平本	暠	7-6 (1986)	58
		"	竹内	孝行		
(6)	海洋温度差エネルギー利用技術と将来性	電子技術総合研究所	梶川	武信	7-6 (1986)	64
(7)	海洋温度差発電に関するフィールドル実験	長崎大学	栗須	正登	7-6 (1986)	71
[特:	集]エネルギー・資源と高度情報化					
(1)	高度情報化社会の展望	(財)電力中央研究所	阿波日	田禾積	8-1 (1987)	43
(2)	情報産業の発展と電気事業の役割	学習院大学	南部	鶴彦	8-1 (1987)	49
(3)	原子力発電所における情報化	東京電力(株)	野々	村誠一	8-1 (1987)	54
(4)	資源探査と高度情報処理	日本シュルンベルジェ(株)	森	俊二	8-1 (1987)	63
(5)	都市ガス事業における高度情報化	オージー情報システム(株)	寺村	三郎	8-1 (1987)	70
(6)	石油業における高度情報化	出光興産(株)	石上	尚希	8-1 (1987)	78
[特:	集]大型プロジェクト(2)					
(1)	高効率ガスタービン	高効率ガスタービン技術研究組合	辻	高弘	8-2 (1987)	34
(2)	汎用スターリングエンジン―中間評価を終えて―	機械技術研究所	山下	巌	8-2 (1987)	40
(3)	実用原子力発電施設作業ロボットの研究開発	極限作業ロボット技術研究組合	安藤	弘昭	8-2 (1987)	47
(4)	マンガン団塊採鉱システム—開発の現状—	技術研究組合	飯沼	孝雄	8-2 (1987)	53
(5)	地球資源衛星の研究開発/超先端加工技術の研究	開発工業技術院	中島	一郎	8-2 (1987)	61
(6)	新型電池電力貯蔵システム—開発の現状—	ムーンライト計画推進室	大高	英司	8-2 (1987)	67
		"	岡崎	進		
(7)	褐炭液化ー新技術と50t/日パイロットプラントー	日本褐炭液化(株)	中子	敬夫	8-2 (1987)	74
[特:	集]有機超薄膜とその機能展開					
(1)	人工分子膜の構築と機能展開	九州大学	東	信行	8-3 (1987)	18
(2)	高分子化リポソームの合成と利用	京都大学	北野	博巳	8-3 (1987)	25
(3)	プラズマ重合薄膜の合成と利用	茨城大学	長田	義仁	8-3 (1987)	32
		II.	山田	勝幸		
(4)	縮合系高分子の超薄膜化技術	東京工業大学	柿本	雅明	8-3 (1987)	40
		"	今井	淑夫		
(5)	自己支持型液晶薄膜の作製プロセスと機能性への展開	九州大学	梶山	千里	8-3 (1987)	46
(6)	液体膜による分離法の最新の開発動向と展開	- 大阪府立大学	片岡	健	8-3 (1987)	52
		"	西機	忠昭		

	題目	所属	執筆	筆者	Vol.−No. (発行年)	頁
(7)	先端産業における薄膜材料の活用	日本板硝子(株)	青木	裕一	8-3 (1987)	58
	集]新型電池・・・開発の現状と展望		HAIN	тн	0 0 (1007)	00
(1)	新しい電池の開発と動向	京都大学	竹原	善一郎	8-4 (1987)	29
(2)	電力貯蔵用電池の開発の現状	大阪工業技術試験所	高橋	ョ 幻, 祥夫	8-4 (1987)	36
(3)	燃料電池の開発の現状	大阪工業技術試験所	児玉	皓雄	8-4 (1987)	43
(4)	リチウム電池の開発の現状	人版工来及例 以 歌/// 山口大学	松田	好晴	8-4 (1987)	52
(4)	リアクム 电池の開光の気状	ш ц Д + , , , , , , , , , , , , , , , , , ,	森田	昌行	0-4 (1967)	32
(5)	ポリマー電池の開発の現状	" 大阪大学	米山	宏	8-4 (1987)	58
(6)	新しい鉛蓄電池の開発とその展開	湯浅電池(株)	渕田	京		
(0)			为 下村	-	8-4 (1987)	65
	新しいアルカリ電池とその展開	日本電池(株)	ניף יו	信夫	8-4 (1987)	71
	集 <i>]エネルギー統計</i>	= W -L 24	स्रोत कीर	+# +	0 5 (1007)	00
(1)	我が国のエネルギー統計	専修大学	齋藤	雄志	8-5 (1987)	22
(2)	エネルギーバランス表	(財)日本エネルギー経済研究所	松井	賢一	8-5 (1987)	30
(3)	我が国の石油統計	シェル興産(株)	久保	弘美	8-5 (1987)	36
(4)	電力統計	(財)電力中央研究所	植木	滋之	8-5 (1987)	43
(5)	民生用エネルギー統計ー家庭用を中心としてー	(株)住環境計画研究所	中上	英俊	8-5 (1987)	51
	集]エネルギー関係のセラミックス					
(1)	イオン導電性セラミックスとその応用	松下電器産業(株)	近藤	繁雄	8-6 (1987)	17
(2)	MHD発電用絶縁壁および耐アーク性電極	大阪工業技術試験所	速水	諒三	8-6 (1987)	23
(3)	エンジニアリングセラミックス	(株)東芝	米屋	勝利	8-6 (1987)	28
(4)	セラミックス超電導材料	東京大学	北沢	宏一	8-6 (1987)	37
		"	笛木	和雄		
(5)	大出力レーザーガラス	HOYA(株)	泉谷	徹郎	8-6 (1987)	42
(6)	強誘電性セラミックス	東京大学	柳田	博明	8-6 (1987)	46
		"	五十月	嵐 香		
(7)	アモルファス熱電材料	山口大学	松原	覚衛	8-6 (1987)	50
[特:	集]21世紀のエネルギー像					
(1)	21世紀エネルギー需給展望-「長期エネルギー需給」	見通し」の改定				
		資源エネルギー庁	川嶋	温	9-1 (1988)	42
(2)	21世紀のエネルギーシナリオ―世界と日本―	(財)日本エネルギー経済研究所	藤目	和哉	9-1 (1988)	47
(3)	電気事業の21世紀ビジョン	東京電力(株)	山田	耕太	9-1 (1988)	54
(4)	21世紀に至る都市ガス事業の展望	大阪ガス(株)	小西	利広	9-1 (1988)	61
(5)	21世紀の自然エネルギー技術	(株)太陽エネルギー研究所	押田	勇雄	9-1 (1988)	67
(6)	核融合発電の具体像ー概念設計から商用発電への過	道一 日本原子力研究所	田村	早苗	9-1 (1988)	74
(7)	21世紀の民生エネルギー技術	(株)大林組	酒井	寛二	9-1 (1988)	82
(8)	宇宙空間利用のエネルギー技術・システム	(株)東芝	城上	保	9-1 (1988)	88
[特:	集]NEDO事業					
(1)	NEDO事業の概要	新エネルギー総合開発機構	内村	理史	9-2 (1988)	18
(2)	産業用等ソーラーシステム	新エネルギー総合開発機構	深沢	和則	9-2 (1988)	21
` '		"	渡部	信	, ,	
(3)	太陽光発電システム	新エネルギー総合開発機構	天野	正喜	9-2 (1988)	26
(4)	瀝青炭液化—250t/日 パイロットプラントの概要	日本コールオイル(株)	北岡	洋治	9-2 (1988)	33
(1)			田辺	正紀	0 2 (1000)	00
(5)	地熱水用ダウンホールポンプの開発	(株)荏原製作所	小泉	淳	9-2 (1988)	38
(6)	メタノール改質型発電の要素研究	新エネルギー総合開発機構	村上		9-2 (1988)	47
(7)	全国地熱資源総合調査	新エネルギー総合開発機構		英之 真一郎	9-2 (1988)	47 54
(8)	王国 心	新エネルギー総合開発機構	植田	^{具一 趴} 稔	9-2 (1988)	
		初エかルヤー秘古開光候 情	但四	化	9-2 (1900 <i>)</i>	01
	<i>集]エネルギー輸送と貯蔵</i> エネルギーの輸送	(計)ロ末ナラルギ 奴汝邢かぎ	盐口	4n ±Ŀ	0_2 (1000)	01
(1)	エネルギーの輸送	(財)日本エネルギー経済研究所	藤目	和哉	9-3 (1988)	21

	題目		所 属	執	筆者 ———	Vol.−No. (発行年)	頁
(2)	一般炭の安定供給(特に中小口ユーザ向け)	(社)シーシーエ	ス振剛協会	: 坂本	徳長	9-3 (1988)	24
(3)	石油製品の輸送と貯蔵		石油連盟			9-3 (1988)	30
(4)	電力の輸送と貯蔵	即	西電力(株)			9-3 (1988)	36
(5)	燃料ガスの輸送と貯蔵		四電刀(株) 阪ガス(株)			9-3 (1988)	44
(6)	海水を利用するエネルギー貯蔵		級カス(ヤネ゙) 名古屋大学			9-3 (1988)	49
(0)	海小を利用するエイル十一 ft 成		ロロ座へ子 知工業大学			9-3 (1900)	49
(7)	宇宙太陽発電システムにおけるマイクロ波エネルギ		京都大学			9-3 (1988)	54
[50	号記念特集]エネルギー・資源の現状と将来						
(1)	エネルギー需給の予測は当るか?	(財)日本エネルギー	経済研究所	佐川	直人	9-4 (1988)	8
(2)	新・省エネルギー	:	工業技術院	向	準一郎	9-4 (1988)	13
		サンシャイン計	画推進本部	神門	正雄		
		ムーンライト	計画推進室	塚本	直也		
(3)	世界のエネルギー資源と我が国のエネルギー和	リ用動向 資源エニ	ネルギー庁	: 山田	英司	9-4 (1988)	19
(4)	持続的繁栄への挑戦ー重みを増す環境教育ー		環境庁	清水	浩	9-4 (1988)	27
(5)	原子力発電の現状と将来		東京大学	秋山	守	9-4 (1988)	29
(6)	MHD発電の現状と将来		京都大学	- 石川	本雄	9-4 (1988)	36
			//	卯本	重郎		
(7)	核融合の開発		大阪大学	中井	貞雄	9-4 (1988)	42
(8)	バイオテクノロジーと一次エネルギー創造	(株)野村	総合研究所			9-4 (1988)	48
(9)	エネルギー需要端の将来展望					9-4 (1988)	54
(10)	エネルギー技術と新材料		京理科大学			9-4 (1988)	59
(11)	わが国の陸上バイオマス資源	2144	神戸大学			9-4 (1988)	64
	集]遺伝資源の収集,保存,利用		117 74 3	7-7-1	J (1 T)	0 1 (1000)	0.
(1)	植物遺伝資源の探索・収集とその意義	(財) 木原記念横浜生命科等	学振興財団	田中	正武	9-5 (1988)	31
(2)	植物遺伝資源の収集・保存		筑波大学		· ·	9-5 (1988)	37
(3)	植物遺伝資源の利用	国立谱	。 医学研究所			9-5 (1988)	44
(4)	微生物遺伝資源の収集, 保存, 利用		化学研究所			9-5 (1988)	49
(5)	水産生物遺伝資源の収集, 保存, 利用	4	水産庁			9-5 (1988)	
			小庄川	正けられ	,)6	3 0 (1300)	00
(1)	廃棄物の再資源化システムと技術開発		京都大学	字岡	正勝	9-6 (1988)	11
(2)	非金属廃棄物の再資源化の現状	(財)クリーン・ジャパン				9-6 (1988)	18
(3)	ガラスびん類のリサイクリング		ゼンノ 村硝子(株)			9-6 (1988)	28
(4)	フライアッシュの有効利用について		的明于(MA) 資源研究所			9-6 (1988)	
(5)	紙類のリサイクル		夏 <i>源明无所</i> 早稲田大学			9-6 (1988)	
(6)	都市ごみ・汚泥処理の実施例①	•	干加山人子	-	催止	9-0 (1966)	40
(0)	一京都市清掃局東清掃工場, 京都市下水道局	左四加珊坦(勃妇方利用)	古邦士兴	. 	/= /+	0_6 (1000)	46
(7)		有田处连场(热阳互利用)	京都大学	土 武田	信生	9-6 (1988)	46
(7)	都市ごみ・汚泥処理の実施例②		古二书	, +v. -t	/0.4	0 0 (1000)	E0
(0)	―東京都光が丘清掃工場のごみ焼却と余熱利」	n —	東京都	公	保幸	9-6 (1988)	52
(8)	都市ごみ・汚泥処理の実施例③		+ - 1	, 4.m	— —	0.0(1000)	F0
r#+ 2	―東京都分別ごみ処理センターの稼動状況― 第3.4 〒2015(AS) /		東京都	5 白畑	完二	9-6 (1988)	58
	集]人工知能(AI)とエネルギー・資源	+-			* = =	10 1 (1000)	00
(1)	AI技術の将来展望		京工業大学		重信	10-1 (1989)	
(2)	発電プラント分野におけるAI	果	京電力(株)		能彬	10-1 (1989)	46
(=)	示	==-	(株)東芝		洋一郎	40 4 //	
(3)	電力系統分野におけるAI	関	西電力(株)			10-1 (1989)	57
			// 		敏之		
			菱電機(株)				
(4)	都市ガス分野におけるAI	大	仮ガス(株)			10-1 (1989)	64
			"	宮阪	信次		

	題 目	所 属	執筆	筆者	Vol.−No. (発行年)	頁 ——
(5)	鉄鋼プラント分野におけるAI	(株)神戸製鋼所	小西	正躬	10-1 (1989)	70
(6)	地下資源探査におけるエキスパートシステム	動力炉・核燃料開発事業団	石堂	昭夫	10-1 (1989)	76
(7)	エキスパートシステム構築ツールとエンジニアリング	横河電機(株)	平田	康郎	10-1 (1989)	83
		"	山本	重彦		
	集]核エネルギー利用技術の進歩			±		
(1)	高速増殖炉技術	動力炉・核燃料開発事業団	高橋	忠男	10-2 (1989)	21
(2)	軽水炉技術の高度化(ABWR)	東京電力(株)	板野	清司	10-2 (1989)	27
(3)	軽水炉技術の高度化(改良型PWR)	関西電力(株)	西村	健	10-2 (1989)	34
(4)	原子力発電所のマン・マシン・システム	三菱重工業(株)	北村	哲男	10-2 (1989)	40
		(株)東芝	早川	博康		
		(株)日立製作所	渡辺	孝雄		
(5)	原子燃料サイクルと燃料再処理	日本原燃サービス(株)	平田	禎也	10-2 (1989)	46
(6)	磁気閉じ込め核融合	東京大学	桂井	誠	10-2 (1989)	52
(7)	慣性核融合	大阪大学	山中	龍彦	10-2 (1989)	58
(8)	炉工学	東京工業大学	井上	晃	10-2 (1989)	65
	集]エネルギー技術評価法					
(1)	総論―エネルギー技術の評価手法	(財)電力中央研究所	内山	洋司	10-3 (1989)	23
(2)	経済性評価	久留米大学	鈴木	岑二	10-3 (1989)	32
(3)	エネルギー効率の評価	(財)政策科学研究所		慶四郎	10-3 (1989)	37
(4)	GERTによる研究開発評価	(財)未来工学研究所	神前	康次	10-3 (1989)	43
(5)	エネルギーシステムのリスク評価―その方法と課題―	東京大学	近藤	駿介	10-3 (1989)	48
(6)	モデルの役割	日本原子力研究所	安川	茂	10-3 (1989)	55
(7)	エネルギー分析	(財)電力中央研究所	辻	明宏	10-3 (1989)	61
	集]ニューマテリアルが拓く世界					
(1)	ファインスティール	新日本製鐵(株)	中村	元治	10-4 (1989)	26
(2)	金属複合材料	京都大学	乾	晴行	10-4 (1989)	33
		II .	山口	正治		
(3)	有機化合物超電導材料―その展望―	大阪大学	松林	玄悦	10-4 (1989)	40
(4)	エネルギー変換と触媒	大阪工業技術試験所	春田	正毅	10-4 (1989)	46
(5)	電子材料としてのニューガラス	日本電気硝子(株)	和田	正道	10-4 (1989)	52
(6)	繊維素材の高機能化—分離膜—	旭化成工業(株)	上出	健二	10-4 (1989)	57
		II .	飯嶋	秀樹		
(7)	スーパーエンプラフィルムの開発動向	住友ベークライト(株)	斉藤	正治	10-4 (1989)	65
	集]都市とエネルギーシステム					
(1)	都市とエネルギー問題	日本環境管理学会	木村	宏	10-5 (1989)	22
(2)	都市と水資源	芝浦工業大学	高橋	裕	10-5 (1989)	29
(3)	都市と電力・ガス	大阪大学	鈴木	胖	10-5 (1989)	36
(4)	都市交通とエネルギー	大阪大学	紙野	桂人	10-5 (1989)	43
		大阪市交通局	伊藤	仁		
(5)	都市廃棄物とエネルギー	京都大学	平岡	正勝	10-5 (1989)	51
(6)	省エネルギー都市建築	(株)大林組	塚越	東男	10-5 (1989)	58
(7)	都市地下の利用	清水建設(株)	根上	義昭	10-5 (1989)	66
[特:	集]高度エネルギー源としての光					
(1)	自由電子レーザーの開発動向	大阪大学	三間	圀興	10-6 (1989)	32
(2)	トカマクプラズマの自由電子レーザ加熱計画	日本原子力研究所	志甫	諒	10-6 (1989)	39
(3)	レーザー核融合と新型ハイパワー固体レーザーの進歩	大阪大学	中塚	正大	10-6 (1989)	45
		"	中井	貞雄		
(4)	産業基盤技術としての高度レーザーの利用	(財) レーザー技術総合研究所	今崎	一夫	10-6 (1989)	54
(5)	シンクロトロン放射光による科学技術の発展	大阪府立放射線中央研究所	北川	通治	10-6 (1989)	59

	題目	所 属	執筆者		Vol.−No. (発行年)	頁
(6)	産業用小型SOR装置の開発動向	住友電気工業(株)	江村 高田	勝治 博史	10-6 (1989)	65
(7)	大型シンクロトロン放射光施設計画	理化学研究所	上坪	宏道	10-6 (1989)	71
[特	集]自然エネルギーの現状を探る					
(1)	太陽光発電の問題点と将来展望	東京工業大学	高橋	清	11-1 (1990)	27
(2)	失速中のソーラーシステムと今面白いパッシブソーラ	一ハウス 早稲田大学	木村	建一	11-1 (1990)	32
(3)	太陽熱エネルギー	九州大学	藤井	哲	11-1 (1990)	37
(4)	地熱エネルギー	秋田大学	本多	朔郎	11-1 (1990)	40
		II.	高島	勲		
(5)	海洋熱エネルギー	室蘭工業大学	渡部	富治	11-1 (1990)	45
(6)	波浪発電	船舶技術研究所	北村	文俊	11-1 (1990)	53
(7)	風力発電	機械技術研究所	松宮	煇	11-1 (1990)	60
[特	集]エネルギー価格の動向とその影響					
(1)	1980年代の国際石油価格	(財)日本エネルギー経済研究所	岩﨑	徹也	11-2 (1990)	31
(2)	石炭価格の動向―その歴史的推移と展望―	(財)日本エネルギー経済研究所	千村	明	11-2 (1990)	38
(3)	新エネルギーコストのモデル化とシミュレーション	東京ガス(株)	早野	拓朗	11-2 (1990)	46
		"	槌屋	治紀		
(4)	原子力開発と化石燃料価格	(財)電力中央研究所	熊倉	修	11-2 (1990)	54
(5)	エネルギー価格の変動とエネルギー需要	神戸大学	斉藤	光雄	11-2 (1990)	60
		II.	得津	一郎		
(6)	エネルギー価格の変動と我が国産業の国際競争力	慶応義塾大学	黒田	昌裕	11-2 (1990)	65
		II.	新保	一成		
		"	河井	啓希		
(7)	世界のLNGプロジェクト―期待される市場拡大―	大阪ガス(株)	中野	文彦	11–2 (1990)	73
	集]燃焼と環境					
(1)	燃焼と環境	豊橋技術科学大学		一友	11-3 (1990)	16
(2)	クリーン燃焼技術	群馬大学	定方	正毅	11-3 (1990)	22
(3)	触媒燃焼による窒素酸化物の低減法	九州大学			11-3 (1990)	30
(4)	ルーナル ど 1 7里 1カラレ ギ	// 	町田	正人	11 0 (1000)	0.5
(4)	省エネルギーと環境改善	中部電力	石原	幸	11-3 (1990)	
(5)	内燃機関の環境対策技術	北海道大学	村山	正	11-3 (1990)	40
(6)	燃焼におけるエアロゾルの生成と防除	豊橋技術科学大学	岡崎	健 #	11-3 (1990)	46
(7) <i>c#</i> +	燃焼による環境影響	群馬県衛生公害研究所	関口	恭一	11-3 (1990)	53
	<i>集]冷熱技術の新展開</i>	<u> </u>	田田七十	+	11 4 (1000)	0.7
(1)	吸収冷凍機の最新技術―空冷化技術を中心として―			真一	11-4 (1990)	
(2)	極低温技術―磁気冷凍を中心として―	(株)東芝	荻原	宏康 秀樹	11–4 (1990)	34
(2)	サーモモジュールの応用と高性能化技術	#####################################	中込	穷倒 欣一	11 4 (1000)	41
(3)	リーモモンユールの心州と同任能化技術	熱電変換技術研究所 科学技術庁	西田	勲夫	11–4 (1990)	41
(4)	宇宙用ヴィルマイヤ冷凍機	三菱電機(株)	吉村		11-4 (1990)	48
(4)	于田川ワイルマイド市保候				11-4 (1990)	40
(5)	大空間の空調・熱環境計画	電子技術総合研究所 鹿島建設(株)	川田	正国	11-4 (1990)	53
(6)	大王間の王調・松環境計画 氷蓄熱利用の空調システムについて	東京電力(株)	大久		11-4 (1990)	59
(7)	生物の急速冷却による保存	大阪大学		末 连 光男	11-4 (1990)	65
	生物の心迷れずによる床件 <i>集]廃棄物のリサイクル</i>	八败八子	问却	ノレプコ	וו 🕂 (וטטט)	UJ
(1)	<i>未」焼来物のリッインル</i> 環境と資源の保全のためのリサイクリング	大阪市立大学	本多	淳裕	11-5 (1990)	25
(2)	環境と貢献の保主のためのサッイフックター建設廃材のリサイクル	大阪市立大学	本 夕 山田	<i>字</i> 怡 優	11-5 (1990)	
(2)	全成が10 V/ / ソ / / //V	人級巾立入子	本多		(טעפו) פ וו	J 4
		"	平多	/子1竹		

	題目	所 属	執筆者		Vol.−No. (発行年)	頁
(3)	重金属廃棄物のリサイクル	日本電気環境エンジニアリング(株)	辻	俊郎	11-5 (1990)	41
(4)	ᆒᆄᅕᆇᄔᄼᄹᇹᆉᇧᆠᄙᇧᆡᆡᆝ	# · · · · · · · · · · · · · · · · · · ·	榊原	直孝	11 5 (1000)	40
(4)	一般廃棄物(燃えないごみ)リサイクル	西宮市環境衛生局	森下	淳	11-5 (1990)	48
(5)	有機物の処理と資源化	京都大学	小林	達治	11-5 (1990)	54
(6)	下水汚泥の緑農地への利用	富士見工業(株)	松崎	敏英	11-5 (1990)	62
(7)	都市ごみの緑農地への利用	東京都農業試験場	伊達	昇	11-5 (1990)	66
(8)	コンポスティングをめぐる「環境」と「資源」	公害防止事業団	藤田	成吉	11-5 (1990)	69
ΓÆ	生1ノ・、ニリベー・. L ビリ / ID)	フジ微生物研究所	藤井	義則		
<i>L 行す:</i> (1)	<i>集]インテリジェントビル(IB)</i> インテリジェントビルとファシリティマネジメント	名古屋大学	月尾	嘉男	11-6 (1990)	30
	FMと関連する諸問題				11-6 (1990)	
(2)		建設省	森 平本	正志		34 40
(3) (4)	インテリジェントビルの動向と都市へのインパクト エネルギーとIB	(株)三菱総合研究所 関西電力(株)	瀬島	一雄 康雄	11-6 (1990) 11-6 (1990)	46
(5)	エベルヤー CID 情報化社会におけるインテリジェントビル	日本電気(株)		· 康雄 田勝洋	11-6 (1990)	56
	「全環境都市」を目指した第一歩―アークヒルズ―			一郎	11-6 (1990)	62
(6)	「宝環境都市」を目指した第一少一ゲークロルスー IBの空調現状と将来	(株) 林 こ ル 設計 研 先 別 (株) 竹 中 工 務 店	井上			68
(7)	IBの至調現仏と付木	(休)刊中工物店	ガエ 杉浦	良則 修史	11-6 (1990)	08
ΓÆ±	集]地球環境の変容と保全	"	杉浦	修工		
(1)	<i>来」心体は現の支柱とは主</i> フロンガス等によるオゾン層破壊と国際的取り組み	国立環境研究所	秋元	肇	12-1 (1991)	39
(2)	地球の温暖化傾向とCO。排出低減策	電子技術総合研究所	恩田	平 和夫	12-1 (1991)	48
(3)	酸性雨の発生機構とその防止策	九州大学	植田	洋匡	12-1 (1991)	56
(4)	海洋汚染の現状とその防止策	東海大学	杉森	康宏	12-1 (1991)	62
(5)	地球の砂漠化傾向と緑化の課題	京都大学	光田	康 本 寧	12-1 (1991)	72
(6)	地球環境保全に向けての様々な主体による取組	環境庁	竹内	一 恒夫	12-1 (1991)	79
(7)	地球環境産業技術研究機構の計画と役割についる		山口	務	12-1 (1991)	85
	集 <i>]輸送とエネルギー</i>	(例) 也外块况在未认时的九城市	щн	127	12 1 (1331)	00
(1)	輸送手段とエネルギー	大阪大学	赤木	新介	12-2 (1991)	19
(2)	船舶とエネルギー技術	三菱重工業(株)			, ,	
(=)			友井		12 2 (1001)	
		"	湯浅	和昭		
(3)	自動車とエネルギー技術	トヨタ自動車(株)	伊藤	亮三	12-2 (1991)	34
(4)	鉄道のエネルギー技術	(財)鉄道総合研究所	野末		12-2 (1991)	40
(5)	新交通システム(中量軌道輸送システム)その経済		2,771	1.320	12 2 (1001)	
, ,		(株)新潟鉄工所	矢﨑	芳直	12-2 (1991)	46
(6)	航空機とエネルギー技術	川崎重工業(株)	平岡	康一	12-2 (1991)	53
(7)	ビル内移動システムとエネルギー経済	三菱電機(株)	渡辺	英紀	12-2 (1991)	60
[特:	集]多様なエネルギー資源の利用における新展開					
(1)	石炭の複合的変換プロセスの開発	京都大学	橋本	健治	12-3 (1991)	17
(2)	石炭変換用の高性能触媒の開発	埼玉工業大学	冨永	博夫	12-3 (1991)	24
(3)	マイクロ波によるリグノセルロースの酵素糖化促進	近畿大学	越島	哲夫	12-3 (1991)	30
(4)	リグノセルローズ直接発酵菌の育種	熊本工業大学	岡田	弘輔	12-3 (1991)	37
(5)	太陽光エネルギーの資源化	九州大学	松尾	拓	12-3 (1991)	44
(6)	吸着法による海水からのウランの採取	東京大学	古崎新	新太郎	12-3 (1991)	50
		"	斎藤	恭一		
(7)	能動的地熱抽出システムの開発	東北大学	阿部	博之	12-3 (1991)	55
[特:	集]エネルギーシステムの計装制御					
(1)	エネルギーシステム計装制御技術の展望	京都大学	吉川	榮和	12-4 (1991)	19
(2)	火力発電プラントの計装制御	九州電力(株)	片山	修造	12-4 (1991)	26

	題目	所属	執	筆者	Vol.−No. (発行年)	頁
(3)	電力系統の監視制御	中部電力(株	高木	久夫	12-4 (1991)	33
(4)	電力示机の無機制御 核燃料再処理プラントにおける計装システム	動力炉・核燃料開発事業団		義裕	12-4 (1991)	41
(4)	核燃料再処理ノブンドにおける計表ノベチム	到刀炉"仅燃料用尤事未造			12-4 (1991)	41
(5)	都市ガス供給管理システム	<i>"</i> 東京ガス(株		末吉	12-4 (1991)	47
(6)	コージェネレーション設備の計装制御	大阪ガス(株)			12-4 (1991)	54
(7)	燃料電池プラントの計装制御	富士電機(株			12-4 (1991)	61
	集]宇宙空間利用	田工电风(小	H /+	-91	12 4 (1001)	01
(1)	宇宙産業とエネルギー	三菱重工業(株)	岸本	健治	12-5 (1991)	23
(2)	商業衛星の現状と今後の計画	宇宙開発事業団			12-5 (1991)	26
(3)	ロケットの現状	宇宙開発事業団			12-5 (1991)	26
(4)	微小重力化の材料科学	(株)三菱総合研究所			12-5 (1991)	37
(5)	月面基地, 火星基地構想とそのエネルギー, 物質的な側面				12-5 (1991)	44
(6)	宇宙用太陽電池の現状と今後の展開	- シャープ(株)			12-5 (1991)	52
		1.	佐賀	達男		
		1	久松	正		
[特:	集(1)]森林資源と環境					
(1)	森林資源の現状と動態	京都大学	有木	純善	12-6 (1991)	7
(2)	熱帯の森林	京都大学	- 山田	勇	12-6 (1991)	13
(3)	森林と酸性雨ースギ林の衰退を中心としてー	農林水産省林野月	堀田	庸	12-6 (1991)	18
(4)	森林資源の再造成	大阪市立大学	内村	悦三	12-6 (1991)	24
[特:	集(2)]建築における省エネルギー					
(1)	住宅・建築における省エネルギー対策	建設省	ì 野津	敏紀	12-6 (1991)	30
(2)	空調システム,蓄熱システム計画と省エネルギー効果	(株)日建設計	- 加藤	晃	12-6 (1991)	37
(3)	ビルディングオートメーションと省エネルギー	山武ハネウェル(株)	成瀬	彰彦	12-6 (1991)	42
(4)	省エネルギービルの実例―伊藤忠横浜港北ビル―	(株)日建設計	- 松縄	堅	12-6 (1991)	50
		1.	伊香	賀俊治		
(5)	日本アイ・ビー・エム大和研究所における省エネルギーシ ステムの概要	(株)竹中工務店	内田	孝	12-6 (1991)	55
(6)	省エネルギービルの実例―東京生命芝ビル―	清水建設(株	秋田	一彦	12-6 (1991)	62
[特:	集]核燃料サイクル技術の開発動向と将来					
(1)	総論	京都大学	東	邦夫	13-1 (1992)	23
(2)	原子燃料の設計・製造①ウラン燃料の設計・製造	原子燃料工業(株	森	一麻	13-1 (1992)	25
(3)	原子燃料の設計・製造②プルトニウム燃料の設計・製造	動力炉・核燃料開発事業団	樫原	英千世	13-1 (1992)	30
(4)	使用済燃料の再処理―軽水炉燃料の再処理―	日本原燃サービス(株)	松岡	伸吾	13-1 (1992)	35
(5)	使用済燃料の再処理―高速炉燃料の再処理―	動力炉・核燃料開発事業団	林	正太郎	13-1 (1992)	42
(6)	ウラン濃縮—遠心分離法—	日本原燃産業(株)	玉井	浄	13-1 (1992)	48
(7)	ウラン濃縮技術―レーザー法―	理化学研究所	i 武内	一夫	13-1 (1992)	54
		I.	岡田	芳樹		
(8)	化学法ウラン濃縮技術と濃縮工場	旭化成工業(株)	武田	邦彦	13-1 (1992)	60
(9)	高レベル放射性廃液のガラス固化体への処理技術	動力炉·核燃料開発事業因 //		隆夫 真一郎	13-1 (1992)	66
(10)	原子炉の解体処理技術 原子力施設ラ	゛ デコミッショニング研究協会			13-1 (1992)	74
(11)		動力炉・核燃料開発事業団			13-1 (1992)	80
(11)	同じが成果例の心間だり				10 1 (1002)	00
「特 :	集]未利用エネルギー		H 76₹	12		
(1)	未13、13713711-1772 未利用エネルギー活用の背景と展望	東京大学	平田	賢	13-2 (1992)	19
(2)	未利用エネルギーの種類と特質、賦存量とその省エネルギー。			炳植	13-2 (1992)	23
(3)	未利用エネルギーの活用技術とその課題	東京農工大学			13-2 (1992)	31
(4)	下水汚泥焼却処理施設の廃熱利用システム	大阪ガス(株			13-2 (1992)	38
(1)	「ハバルのの場合を主席の文文の元が中かけてハーム	ノいスカハ(作	7,43	79 11	10 2 (1002)	00

	題目	所属	執	筆者	Vol.−No. <u>(発行年)</u>	頁
(5)	都市ごみ焼却廃熱の利用について	(株)クボタ	井上	芳郎	13-2 (1992)	47
(6)	都市排熱(地下鉄等)の利用システム	三菱重工業(株)	角谷	修二	13-2 (1992)	55
(7)	海水、河川水の未利用エネルギー活用による地域冷		草	隆	13-2 (1992)	62
	集]燃料電池		•			-
(1)	燃料電池技術の開発動向	大阪工業技術試験所 "	宮崎 奥山	義憲 博信	13-3 (1992)	14
(2)	リン酸型燃料電池の商用化リニ	・ ン酸型燃料電池発電技術研究組合		善朗	13-3 (1992)	21
(3)	溶融炭酸塩型燃料電池の技術開発動向	MCFC研究組合		長之	13-3 (1992)	29
(0)		III	寺田	誠二	10 0 (1002)	20
(4)	固体電解質型燃料電池の開発状況	化学技術研究所		量正之	13-3 (1992)	36
(. /	EIT BIT X LIMIT BIS OF MINE WAS	電子技術総合研究所		和夫	10 0 (1002)	
(5)	ナフサ燃料電池の開発状況	(財)石油産業活性化センター	吉岡	一誠	13-3 (1992)	44
(6)	常温型燃料電池の開発状況	大阪工業技術試験所		啓恭	13-3 (1992)	50
(7)	高温固体電解質型燃料電池に関する基礎研究	京都大学		善一郎	13-3 (1992)	56
	集]パルスパワー(その制御と関連現象)	V/ Uh// 1	11///		10 0 (1002)	00
(1)		東京大学	上野	勲	13-4 (1992)	25
(1)	מחם טיין ו	京都大学		宗明	10 4 (1002)	20
(2)	過渡的電力制御	(財)電力中央研究所		次紀	13-4 (1992)	28
(3)	パルスパワー電源の現状と動向	電子技術総合研究所		昭平	13-4 (1992)	34
(0)		(株)指月電機製作所		訓一	10 4 (1002)	04
(4)	爆薬: 高密度化学エネルギー	化学技術研究所			13-4 (1992)	40
(5)	レーザーにおけるパルスパワー技術	電子技術総合研究所			13-4 (1992)	47
(6)	自由電子レーザー	電子技術総合研究所		家和勝	13-4 (1992)	51
(7)	高エネルギークラスター	電子技術総合研究所		康嗣	13-4 (1992)	57
	(集] <i>砂漠緑化システム</i>	2 1 XHI40 L 8170171	4 11	13C (III)-3	10 1 (1002)	0,
(1)	砂漠の現状と動向一自然環境から一	東京大学	大森	博雄	13-5 (1992)	12
(2)	沙漠環境とその開発の社会経済的諸問題	日本沙漠学会・明治大学		巌	13-5 (1992)	20
(3)	砂漠化と農業	京都大学		一剛	13-5 (1992)	26
(4)	水資源の利用	鳥取大学		友久	13-5 (1992)	32
(5)	乾燥地の緑化システム	京都府立大学			13-5 (1992)	38
(6)	砂漠緑化のケーススタディ① シェルケア州カッターラ地区総合農業開発ーエジプト	(性) カギカ	平賀	義彦	13-5 (1992)	45
(7)	砂漠緑化のケーススタディ② 中国内蒙古自治区毛烏素砂漠の緑化に関する諸問	題 京都大学	小橋	澄治	13-5 (1992)	50
(8)	砂漠緑化のケーススタディ③ メキシコ沙漠地域農業開発計画	鳥取大学	河野	洋	13-5 (1992)	54
(9)	砂漠緑化都市	清水建設(株)	前垣(内正記	13-5 (1992)	60
[特	集]エネルギーの長距離輸送					
(1)	総論	東京農工大学	堀米	孝	13-6 (1992)	23
(2)	電気の形態での輸送	東京電力(株)	一原	嘉昭	13-6 (1992)	30
(3)	電磁波形態によるエネルギーの長距離輸送	京都大学	松本	紘	13-6 (1992)	38
(4)	液体水素の形態での輸送	テイサン(株)	花田	卓爾	13-6 (1992)	46
(5)	金属水素化物の形態での輸送	化学技術研究所	秋葉	悦男	13-6 (1992)	54
(6)	有機水素化物の形態での輸送	大阪工業技術試験所	若林	昇	13-6 (1992)	61
(7)	水素ガスの形態での輸送	東京ガス(株)	津留	義通	13-6 (1992)	69
[特	集]分散型都市エネルギーシステム					
(1)	都市のエネルギー需要と供給システム	大阪大学	辻 🎚	殺一郎	14-2 (1993)	20
(2)	都市におけるエネルギー代替の評価	京都大学	手塚	哲央	14-2 (1993)	27
		II.	喜多	_		
		<i>II</i>	西川	禕一		

	題目	所原	執	筆者	Vol.−No. (発行年)	頁 ——
(3)	都市型コージェネレーションの最適計画	大阪府立大 "	学 伊東	弘一	14-2 (1993)	34
(4)	リン酸型燃料電池	富士電機(株			14-2 (1993)	40
(5)	ガスタービン・ガスエンジン	東京ガス(株			14-2 (1993)	46
(6)	電源構成における分散型システム	東京理科大學		俊介	14-2 (1993)	52
(7)	都市の電力供給システムと電力貯蔵設備	東北大			14-2 (1993)	59
[特	集]スーパーエネルギーテクノロジー					
(1)	亜光速ロケットの可能性	東京大	学 荒川	義博	14-3 (1993)	21
(2)	二酸化炭素を酸化剤とする燃焼—火星大気用推進機	関の可能性— 東京都立大学	学 湯浅	三郎	14-3 (1993)	28
(3)	常温核融合ー過剰熱・核反応生成物と反応モデルー	大阪大	営 高橋	亮人	14-3 (1993)	38
(4)	高温酸化物超伝導体の将来	大阪大	営 河合	七雄	14-3 (1993)	43
(5)	筋肉運動とエネルギー	千葉大	学 丸山	工作	14-3 (1993)	52
(6)	マリンバイオマスとクリーンエネルギー生産	マイアミ大	学 三井	旭	14-3 (1993)	58
(7)	高温熱電変換材料の新展開	名古屋大	学 河本	邦仁	14-3 (1993)	67
[特	集]自然災害とエネルギー					
(1)	自然災害とエネルギー: 総論	京都大	学 山元	龍三郎	14-4 (1993)	26
(2)	地震とそのエネルギー	早稲田大岩	学 笠原	慶一	14-4 (1993)	30
(3)	津波	元東京大	学 羽鳥	徳太郎	14-4 (1993)	36
(4)	火山噴火のエネルギーと災害	東京農業大学			14–4 (1993)	42
(5)		財)砂防・地すべり技術センタ-			14-4 (1993)	50
(6)	洪水の諸相とエネルギー	京都大學		裕一郎	14-4 (1993)	58
(7)	台風による災害	気象大	学 村松	照男	14–4 (1993)	65
	集]太陽電池実用化の取り組み					
(1)		ベルギー・産業技術総合開発機構	構 中川	興史	14–5 (1993)	12
(2)	セル高効率化技術の開発動向	+	· 	_	4.5 (4000)	4.0
	①結晶系シリコンセル	東京農工大学			14-5 (1993)	19
	②薄膜太陽電池の開発動向	東京工業大			14-5 (1993)	24
(2)	③化合物半導体系セル 太陽電池用低コストシリコン基板製造技術の開発動向	N7	T ЩП	真史	14–5 (1993)	30
(3)	へ 「) 类公	復土	14_5 (1002)	27
	①太陽電池用シゾコン製造技術の開発動向 ②太陽電池のための結晶化法と電磁鋳造法	川崎製鉄(株 住友シチックス(株		復夫 恭二郎	14-5 (1993) 14-5 (1993)	37 43
(4)	太陽光発電システムの系統連系制御技術	(財)電力中央研究所			14-5 (1993)	43 49
(5)	太陽光発電普及促進施策「新エネルギー発電フィール		/1 /电/11	/H	14 3 (1995)	43
(0)		ハイディングロディングロックログロックス ベルギー・産業技術総合開発機構	構 向山	光幸	14-5 (1993)	57
「特	キ <i>]デマンドサイド・マネジメント</i>		7 1.3	70-	11 0 (1000)	0,
(1)	デマンドサイド・マネジメントの展望と課題	東京大 <u>*</u>	学 浅野	浩志	14-6 (1993)	12
(2)	米国におけるデマンドサイド・マネジメントの動向	(株)三菱総合研究所			14-6 (1993)	17
(3)	日本型デマンドサイド・マネジメントの模索	名古屋学院大学			14-6 (1993)	23
(4)	負荷遮断料金によるデマンドサイド・マネジメント	(財)電力中央研究所	斤 松川	勇	14-6 (1993)	30
(5)	電力系統から見たデマンドサイド・マネジメント	横浜国立大	学 大山	力	14-6 (1993)	36
(6)	負荷集中制御システム実証試験	九州電力(株) 柿本	仁司	14-6 (1993)	41
(7)	都市ガス冷房による電力ピークカット	東京ガス(株)渡辺	尚生	14-6 (1993)	50
(8)	デマンドサイド・マネジメント実現のための最新技術	三菱電機(株) 鈴木	浩	14-6 (1993)	54
			/ 伊与	田功		
[特	集]資源リサイクル問題					
(1)	リサイクル社会に向けて	大阪大 <u></u>	営 鈴木	胖	15-1 (1994)	39
(2)	リサイクル問題の経緯と今後の方向(財))クリーン・ジャパン・センタ-	- 本多	淳裕	15-1 (1994)	49
(3)	廃棄物処理・リサイクルを考慮した製品アセスメントについて	早稲田大	学 永田	勝也	15-1 (1994)	56
(4)	建設廃棄物(建設副産物)とリサイクル	武蔵工業大学	学 大井	昭夫	15-1 (1994)	64
(5)	プラスチック製品とリサイクル	住友化学工業(株)原田	紘一	15-1 (1994)	71

翻訳者 大阪大学 村田 聡		題 目 所 「	所 属	執筆者		Vol.−No. (発行年)	頁
1 日産自動車とリナイクリング 1 日産自動車 1 日産自動車 1 日産自動車 1 日本	(6)	家雷製品とリサイクル	(株)日立製作所	福島	哲郎	15–1 (1994)	79
特別 大阪 大阪 大阪 大阪 大阪 大阪 大阪 大				_			
(け) 米園における石族利用の現状と限望 ペンシルバニア大学 15-2 (1994) 20 18-2				337119	,,,	10 1 (1001)	
開訳者 大阪大学 野村 正勝			ペンシルバニア大学	Chunsh	nan Song	15-2 (1994)	20
##	(- ,			Harold	H. Schobert	(,	
				Alan W	. Scaroni		
		翻訳者	大阪大学	野村	正勝		
15-2 (1994) 15-2 (1994)			"	貴傅:	名 甲		
おけられば 100			"	小久	保 研		
おけんにおけん石炭利用の現状と展望	(2)	1983~1993年におけるオーストラリアの石炭産業の概観	ペンシルバニア大学	David E.	Mainwarning	15-2 (1994)	32
3		翻訳者	大阪大学	村田	聡		
## 15-2 (1994) 15-2 (1994) 15-3 (1994)			"	野村	正勝		
解訳者	(3)	カナダにおける石炭利用の現状と展望	ペンシルバニア大学	W. F	Pawlak	15-2 (1994)	35
##			"	J. I	(ramer		
##			"	K. Szy	ymocha		
中国での石炭利用技術の現状と展望 大連理工大学 第			"	B. Igr	nasiak		
1		翻訳者	大阪大学	川上	英治		
4 中国での石炭利用技術の現状と展望 大連理工大学 郭 樹才 15-2 (1994) 39 翻訳者			"	中川	真一		
翻訳者 一次の石炭利用技術の開発の現状 別 石炭利用総合センター 志鷹 義明 15-2 (1994) 44 46 15-2 (1994) 44 46 15-2 (1994) 45 45 15-2 (1994) 45 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 49 49 49 49 49 49 49			"	野村	正勝		
翻訳者 一次の石炭利用技術の開発の現状 別 石炭利用総合センター 志鷹 義明 15-2 (1994) 44 46 15-2 (1994) 44 46 15-2 (1994) 45 45 15-2 (1994) 45 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 48 45 15-2 (1994) 49 49 49 49 49 49 49	(4)	中国での石炭利用技術の現状と展望	大連理工大学	郭		15-2 (1994)	39
5 日本の石炭利用技術の開発の現状		翻訳者		蘇	燕		
(6)	(5)	日本の石炭利用技術の開発の現状	(財) 石炭利用総合センター	志鷹	義明	15-2 (1994)	44
 (7) 石炭構造研究最前線 大阪大学 50	(6)		エネルギーシステムへの転換に	向けて-	_		
東北大学 飯野 雅 北海道大学 真田 雄三 北海道大学 真田 雄三 北海道大学 真田 雄三 北海道大学 真田 雄三 北海道大学 張 韓国 15-2 (1994) 63 7 15-3 (1994) 63 7 15-3 (1994) 63 7 15-3 (1994)			大阪大学	朴	炳植	15-2 (1994)	48
おおり 15-3 (1994) 15-3 ((7)	石炭構造研究最前線	大阪大学	野村	正勝	15-2 (1994)	55
おおりに 10mm			東北大学	飯野	雅		
名成利用と環境調和 東北大学 張 戦国 15-2 (1994) 83			北海道大学	真田	雄三		
「大株・大力スの新展開			"	熊谷	治夫		
(計算) 天然ガスの新展開 (1) 天然ガス導入に関する内外の動向 (財)日本エネルギー経済研究所 森田 浩仁 15-3 (1994) 13 (2) 天然ガス資源の探査技術の現状とその地球物理学アクティヴィティ (財)石油開発情報センター 岡野 正 15-3 (1994) 19 京都大学 菅野 強 15-3 (1994) 28 (財) 大祭ガスの精製・液化・気化に関する技術的動向 三菱商事(株) 南 浩一 15-3 (1994) 35 京都大学 若松 貴英 (財) エネルギー総合工学研究所 松沢 忠弘 15-3 (1994) 40 (日) コールベッドメタン (財)エネルギー総合工学研究所 松沢 忠弘 15-3 (1994) 47 (ア) 液体燃料転換技術開発ー天然ガスからメタノールへー (独)新エネルギー・産業技術総合開発機構 武澤 義高 15-3 (1994) 53 【持集】文明の発達と動力エネルギー (1) 文明と動力エネルギー (1) 文明と動力エネルギーの私的総論 東京工業大学 一色 尚次 15-4 (1994) 25 (2) 動力としての人力と蓄力 元 (財)石炭技術研究所 野原 博 15-4 (1994) 31 (3) 風力 足利工業大学 牛山 泉 15-4 (1994) 38 (4) 水力利用の昔と今 (株)東芝 田中 宏 15-4 (1994) 38 (4) 水力利用の昔と今 (株)東芝 田中 宏 15-4 (1994) 45	(8)	石炭利用と環境調和	東北大学	張	戦国	15-2 (1994)	63
(1) 天然ガス導入に関する内外の動向 (財)日本エネルギー経済研究所 森田 浩仁 15-3 (1994) 13 (2) 天然ガス資源の探査技術の現状とその地球物理学アクティヴィティ (財)石油開発情報センター 岡野 正 15-3 (1994) 19 京都大学 菅野 強 (3) 天然ガス開発と生産の技術動向 帝国石油(株) 田村嘉三郎 15-3 (1994) 28 "井上 望 (4) 天然ガスの精製・液化・気化に関する技術的動向 三菱商事(株) 南 浩一 15-3 (1994) 35 京都大学 若松 貴英 (5) ガスハイドレート 地質調査所 奥田 義久 15-3 (1994) 40 (6) コールベッドメタン (財)エネルギー総合工学研究所 松沢 忠弘 15-3 (1994) 47 (7) 液体燃料転換技術開発ー天然ガスからメタノールへー (独)新エネルギー・産業技術総合開発機構 武澤 義高 15-3 (1994) 53 [特集]文明の発達と動力エネルギー (独)新エネルギー・産業技術総合開発機構 武澤 義高 15-3 (1994) 53 [特集]文明の発達と動力エネルギー (1) 文明と動力エネルギーの私的総論 東京工業大学 一色 尚次 15-4 (1994) 25 (2) 動力としての人力と蓄力 元 (財)石炭技術研究所 野原 博 15-4 (1994) 31 (3) 風力 足利工業大学 牛山 泉 15-4 (1994) 38 (4) 水力利用の昔と今 (株)東芝 田中 宏 15-4 (1994) 45			"	富田	彰		
(2) 天然ガス資源の探査技術の現状とその地球物理学アクティヴィティ	[特	集]天然ガスの新展開					
(財)石油開発情報センター 岡野 正 15-3 (1994) 19 京都大学 菅野 強 15-3 (1994) 28 旧井上 望 15-3 (1994) 28 旧井上 望 15-3 (1994) 28 旧井上 望 15-3 (1994) 35 日本	(1)	天然ガス導入に関する内外の動向	(財)日本エネルギー経済研究所	森田	浩仁	15-3 (1994)	13
京都大学 菅野 強 15-3 (1994) 28 28 28 28 28 28 29 28 29 28 28	(2)	天然ガス資源の探査技術の現状とその地球物理学ア	クティヴィティ				
(3) 天然ガス開発と生産の技術動向 帝国石油(株) 田村嘉三郎 15-3 (1994) 28			(財) 石油開発情報センター	岡野	正	15-3 (1994)	19
(4) 天然ガスの精製・液化・気化に関する技術的動向 三菱商事(株) 南 浩一 15-3 (1994) 35 京都大学 若松 貴英 (5) ガスハイドレート 地質調査所 奥田 義久 15-3 (1994) 40 (6) コールベッドメタン (財)エネルギー総合工学研究所 松沢 忠弘 15-3 (1994) 47 (7) 液体燃料転換技術開発ー天然ガスからメタノールへー (独)新エネルギー・産業技術総合開発機構 武澤 義高 15-3 (1994) 53 [特集]文明の発達と動力エネルギー (1) 文明と動力エネルギーの私的総論 東京工業大学 一色 尚次 15-4 (1994) 25 (2) 動力としての人力と蓄力 元 (財)石炭技術研究所 野原 博 15-4 (1994) 31 (3) 風力 足利工業大学 牛山 泉 15-4 (1994) 38 (4) 水力利用の昔と今 (株)東芝 田中 宏 15-4 (1994) 45			京都大学	菅野	強		
(4) 天然ガスの精製・液化・気化に関する技術的動向 三菱商事(株) 南 浩一 15-3 (1994) 35 京都大学 若松 貴英 (5) ガスハイドレート 地質調査所 奥田 義久 15-3 (1994) 40 (6) コールベッドメタン (財)エネルギー総合工学研究所 松沢 忠弘 15-3 (1994) 47 (7) 液体燃料転換技術開発ー天然ガスからメタノールへー (独)新エネルギー・産業技術総合開発機構 武澤 義高 15-3 (1994) 53 [特集]文明の発達と動力エネルギー (1) 文明と動力エネルギーの私的総論 東京工業大学 一色 尚次 15-4 (1994) 25 (2) 動力としての人力と蓄力 元 (財)石炭技術研究所 野原 博 15-4 (1994) 31 (3) 風力 足利工業大学 牛山 泉 15-4 (1994) 38 (4) 水力利用の昔と今 (株)東芝 田中 宏 15-4 (1994) 45	(3)	天然ガス開発と生産の技術動向	帝国石油(株)	田村	嘉三郎	15-3 (1994)	28
(5) ガスハイドレート 地質調査所 奥田 義久 15-3 (1994) 40 (6) コールベッドメタン (財)エネルギー総合工学研究所 松沢 忠弘 15-3 (1994) 47 (7) 液体燃料転換技術開発ー天然ガスからメタノールへー (独)新エネルギー・産業技術総合開発機構 武澤 義高 15-3 (1994) 53 [特集]文明の発達と動力エネルギー (1) 文明と動力エネルギーの私的総論 東京工業大学 一色 尚次 15-4 (1994) 25 (2) 動力としての人力と蓄力 元 (財)石炭技術研究所 野原 博 15-4 (1994) 31 (3) 風力 足利工業大学 牛山 泉 15-4 (1994) 38 (4) 水力利用の昔と今 (株)東芝 田中 宏 15-4 (1994) 45			II.	井上	望		
(5) ガスハイドレート 地質調査所 奥田 義久 15-3 (1994) 40 (6) コールベッドメタン (財)エネルギー総合工学研究所 松沢 忠弘 15-3 (1994) 47 (7) 液体燃料転換技術開発ー天然ガスからメタノールへー (独)新エネルギー・産業技術総合開発機構 武澤 義高 15-3 (1994) 53 [特集]文明の発達と動力エネルギー (1) 文明と動力エネルギーの私的総論 東京工業大学 一色 尚次 15-4 (1994) 25 (2) 動力としての人力と蓄力 元 (財)石炭技術研究所 野原 博 15-4 (1994) 31 (3) 風力 足利工業大学 牛山 泉 15-4 (1994) 38 (4) 水力利用の昔と今 (株)東芝 田中 宏 15-4 (1994) 45	(4)	天然ガスの精製・液化・気化に関する技術的動向	三菱商事(株)	南	浩一	15-3 (1994)	35
(6)コールベッドメタン(財)エネルギー総合工学研究所松沢 忠弘15-3 (1994)47(7)液体燃料転換技術開発ー天然ガスからメタノールへー(独)新エネルギー・産業技術総合開発機構武澤 義高15-3 (1994)53[特集]文明の発達と動力エネルギー実際工業大学一色 尚次15-4 (1994)25(1)文明と動力エネルギーの私的総論東京工業大学一色 尚次15-4 (1994)25(2)動力としての人力と蓄力元 (財)石炭技術研究所野原 博15-4 (1994)31(3)風力足利工業大学牛山 泉15-4 (1994)38(4)水力利用の昔と今(株)東芝田中 宏15-4 (1994)45			京都大学	若松	貴英		
(7) 液体燃料転換技術開発ー天然ガスからメタノールへー(独)新エネルギー・産業技術総合開発機構 武澤 義高 15-3 (1994) 53[特集]文明の発達と動力エネルギー東京工業大学 一色 尚次 15-4 (1994) 25(1) 文明と動力エネルギーの私的総論 東京工業大学 一色 尚次 15-4 (1994) 25(2) 動力としての人力と蓄力 元 (財)石炭技術研究所 野原 博 15-4 (1994) 31(3) 風力 足利工業大学 牛山 泉 15-4 (1994) 38(4) 水力利用の昔と今 (株)東芝 田中 宏 15-4 (1994) 45	(5)	ガスハイドレート	地質調査所	奥田	義久	15-3 (1994)	40
(独)新エネルギー・産業技術総合開発機構 武澤 義高 15-3 (1994) 53[特集]文明の発達と動力エネルギー東京工業大学 一色 尚次 15-4 (1994) 25(1) 文明と動力エネルギーの私的総論東京工業大学 一色 尚次 15-4 (1994) 31(2) 動力としての人力と蓄力元 (財)石炭技術研究所 野原 博 15-4 (1994) 31(3) 風力足利工業大学 牛山 泉 15-4 (1994) 38(4) 水力利用の昔と今(株)東芝 田中 宏 15-4 (1994) 45	(6)	コールベッドメタン	(財)エネルギー総合工学研究所	松沢	忠弘	15-3 (1994)	47
[特集]文明の発達と動力エネルギー東京工業大学 一色 尚次 15-4 (1994) 25(1) 文明と動力エネルギーの私的総論東京工業大学 一色 尚次 15-4 (1994) 25(2) 動力としての人力と蓄力元 (財)石炭技術研究所 野原 博 15-4 (1994) 31(3) 風力足利工業大学 牛山 泉 15-4 (1994) 38(4) 水力利用の昔と今(株)東芝 田中 宏 15-4 (1994) 45	(7)	液体燃料転換技術開発ー天然ガスからメタノールへー	-				
(1) 文明と動力エネルギーの私的総論東京工業大学 一色 尚次 15-4 (1994) 25(2) 動力としての人力と蓄力元 (財)石炭技術研究所 野原 博 15-4 (1994) 31(3) 風力足利工業大学 牛山 泉 15-4 (1994) 38(4) 水力利用の昔と今(株)東芝 田中 宏 15-4 (1994) 45		(独)新エネ	ルギー・産業技術総合開発機構	武澤	義高	15-3 (1994)	53
(2)動力としての人力と蓄力元 (財)石炭技術研究所野原博15-4 (1994)31(3)風力足利工業大学牛山泉15-4 (1994)38(4)水力利用の昔と今(株)東芝田中宏15-4 (1994)45	[特	集]文明の発達と動力エネルギー					
(3) 風力足利工業大学 牛山 泉 15-4 (1994) 38(4) 水力利用の昔と今(株)東芝 田中 宏 15-4 (1994) 45	(1)	文明と動力エネルギーの私的総論	東京工業大学	一色	尚次	15-4 (1994)	25
(4) 水力利用の昔と今 (株)東芝 田中 宏 15-4 (1994) 45	(2)	動力としての人力と蓄力	元 (財)石炭技術研究所	野原	博	15-4 (1994)	31
	(3)	風力	足利工業大学	牛山	泉	15-4 (1994)	38
(5) 蒸気動力 神戸大学 赤川 浩爾 15-4 (1994) 50	(4)	水力利用の昔と今	(株)東芝	田中	宏	15-4 (1994)	45
	(5)	蒸気動力	神戸大学	赤川	浩爾	15-4 (1994)	50

	題目	所属	執	筆者	Vol.−No. (発行年)	頁
(6)	内燃機関	金沢工業大学	佐藤	豪	15-4 (1994)	57
(7)	核エネルギー	東京大学	鈴木	篤之	15-4 (1994)	63
[特:	集]クリーン自動車をめざして					
(1)	総説:クリーン自動車をめざして	早稲田大学	大聖	泰弘	15-5 (1994)	26
(2)	ガソリン車のエミッション低減技術の現状と将来	トヨタ自動車(株)	小西	正己	15-5 (1994)	31
(3)	ディーゼルエンジン車はどこまでクリーンか	北海道大学	村山	正	15-5 (1994)	37
(4)	電気自動車の現状と将来	東京電力(株)	森下	眞夫	15-5 (1994)	44
(5)	ハイブリッド自動車の現状と将来	日野自動車工業(株)	鈴木	孝	15-5 (1994)	53
(6)	天然ガス自動車の現状と将来	大阪ガス(株)	井上	英郎	15-5 (1994)	62
(7)	メタノール自動車の現状と将来	(財)日本自動車研究所	金	栄吉	15-5 (1994)	68
(8)	水素自動車の現状と将来	機械技術研究所	濱	純	15-5 (1994)	77
[特:	集]アジアのエネルギー情勢と環境問題					
(1)	アジアにおける持続的な成長とは	(財)電力中央研究所	新田	義孝	15-6 (1994)	22
(2)	アジアのエネルギー事情	(財)日本エネルギー経済研究所	小川	芳樹	15-6 (1994)	28
(3)	深刻化するアジアの環境問題-東アジアの大気	汚染と酸性雨ー 埼玉大学	坂本	和彦	15-6 (1994)	38
(4)	中国の経済発展と環境問題	慶応義塾大学	吉岡	完治	15-6 (1994)	45
		"	早見	均		
		東海大学	池田	明由		
(5)	中国の環境政策に関する一考察	聖学院大学	秋吉	祐子	15-6 (1994)	52
(6)	途上国への環境保全技術移転のあり方	(株)石井鐵工所	松村	正雄	15-6 (1994)	59
[特:	集]未来展望(随想)					
(1)	新しき明日が永遠に来るように―農業の持つ力を	を信じて― 東北農業試験所	伊澤	敏彦	16-1 (1995)	38
(2)	これからのエネルギー	東京電力(株)	伊藤	文夫	16-1 (1995)	40
(3)	バイオマス	資源環境技術総合研究所	小木	知子	16-1 (1995)	42
(4)	エネルギー・資源学会事情―15年が過ぎて, 今-	ニュニュ エネルギー・資源学会	川上	佳寿子	16-1 (1995)	45
(5)	食料と土壌	京都大学	久馬	—剛	16-1 (1995)	47
(6)	未来都市「エコ・エネルギー都市」を目指して	物質工学工業技術研究所	佐藤	眞士	16-1 (1995)	49
(7)	今後のエネルギー・資源政策の課題について	カリフォルニア大学	榊原	奢理子	16-1 (1995)	52
(8)	建築におけるエネルギー消費の実態と未来	三重大学	相良		16-1 (1995)	54
(9)	エネルギー資源と地球環境	地球化学研究協会	猿橋	勝子	16-1 (1995)	57
(10)	政策決定ゲームに参加して―特に環境・資源問題		庄司		16-1 (1995)	59
(11)	通産省のエネルギー開発への取り組み―太陽光				, ,	
		ニューサンシャイン計画推進本部	杉上	孝二	16-1 (1995)	61
(12)	21世紀における石炭の高効率利用を目指して	ペンシルバニア州立大学	宋	春山	16-1 (1995)	63
(13)	大気環境について考える	学位授与機構	田中	郁三	16-1 (1995)	65
(14)			手塚		16-1 (1995)	67
(15)	自然が好きでない人間の自然保護論	東京大学	中西	準子	16-1 (1995)	69
(16)	エネルキ、文明開化の思い出と今後のエネルキ、材料開	発 (株)東芝	中橋	昌子	16-1 (1995)	71
(17)	不確実性下の選択問題へ向けて	(財)電力中央研究所	長野	浩司	16-1 (1995)	73
(18)	水力エネルギーへの期待	東北大学	西澤	潤一	16-1 (1995)	75
(19)	深海底鉱物資源の開発時期はいつか	京都大学	八田	夏夫	16-1 (1995)	77
(20)		大阪大学	浜川		16-1 (1995)	79
(21)	ミクロな視点から見たCO ₂ の海洋処理	東京工業大学		秀一郎	16-1 (1995)	81
(22)	建築における省エネルギーの一つの方向	(株)日建設計	牧	英二	16-1 (1995)	84
(23)	エネルギーと環境問題で思うこと	三菱石油(株)	松枝	正門	16-1 (1995)	86
(24)	地熱資源の使いみち	一支行 <i>间(</i> 标/ 地質調査所	水垣		16-1 (1995)	88
(25)	エネルギー・燃焼・大気汚染に関する環太平洋協		水谷	幸夫	16-1 (1995)	90
(26)		三菱電機(株)	光田	まり	16-1 (1995)	
(∠ U)		二发电饭(怀)	ЛυШ	忠功	10 1 (1993)	32

	題目	所属	執	筆者 ———	Vol.−No. (発行年)	頁 ——
(27)	一次地金の再生を目指す省エネルギー・環境調和型アル	ルミリサイクル				
, ,		(財)大阪科学技術センター	- 村上	陽太郎	16-1 (1995)	94
(28)	エコテクノロジーに必要なもの	資源環境技術総合研究所		弘毅	16-1 (1995)	
(29)	自然エネルギーの利用	慶應義塾大学		富美子	16-1 (1995)	
(30)	電力機器の超電導化	(株)東芝		えり子	16-1 (1995)	
(31)	地球環境問題―自然科学と政治の融合	三菱化学生命科学研究所		昌平	16-1 (1995)	
-	集]水熱反応による有機廃棄物の資源化処理					
(1)	水熱反応を利用した有機廃棄物の資源化処理―その処	.置づけと特徴— 東北大学	望 榎本	兵治	16-2 (1995)	23
(2)	塩化ビニリデン―塩化ビニル共重合体の液相酸化法に					
\- /		東北大学	吉岡	敏明	16-2 (1995)	27
		ミノルタ(株				
		東北大学		次雄		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		昭嗣		
(3)	加硫ゴム廃棄物の資源化	西川ゴム工業(株		俊成	16-2 (1995)	32
(4)	バイオマスの廃棄物の資源化	東北大学		邦夫	16-2 (1995)	37
(5)	下水汚泥の資源化処理	資源環境技術総合研究所		伸也	16-2 (1995)	
(0)		オルガノ(株		明	10 2 (1000)	70
(6)	有害廃棄物の水熱分解処理	高知大學			16-2 (1995)	49
	等] <i>環境監查</i>		Щти	TIVE	10 2 (1330)	70
(1)	<i>₹」は光温量</i> 環境監査の理念と目的	環境資源科学研究所	f 池田	豊	16-3 (1995)	26
(2)	環境管理・監査の国際標準化	(財)日本規格協会		博	16-3 (1995)	31
(3)	欧米における環境監査の動向	豊橋技術科学大学		一友	16-3 (1995)	
(4)	環境管理・監査と日本企業の対応	(株)日本環境認証機構		哲郎	16-3 (1995)	
(5)	ライフサイクル分析	東京大学		久	16-3 (1995)	
	フィンサイクル が 付 環境配慮型経営を目指して	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		-		
(6)			佐藤	勝年	16-3 (1995)	56
	集] 熱電変換 – エネルギー基幹技術への脱皮を目指して ・ 熱電せ物 の 新屋間		: +m	仁人『久	10 4 (1005)	0.5
(1)		電子技術総合研究所		敏隆	16-4 (1995)	
(2)	熱電発電技術の何処が問題か	東京工業大学			16-4 (1995)	
(3)	熱電冷却システムのブレークスルー	北海道大学			16-4 (1995)	
(4)	傾斜構造形成による高効率熱電エネルギー変換材料	金属材料技術研究所			16-4 (1995)	
(5)	磁場中の熱電発電ー核融合研究における熱電変換ー	核融合科学研究所		作太郎	16-4 (1995)	
(6)	熱電モジュール製造技術の革新とコスト低減	コマツエレクトロニクス(株			16-4 (1995)	
(7)	熱電変換応用技術の未来像 ************************************	湘南工科大学	星 梶川	武信	16-4 (1995)	68
	集 <i>]フロン対策</i> - (松子) なぼせばしいままっこ。のぼぼ、ウロルのプラーフ	#*	.	→ 077	10 5 (1005)	4.0
(1)	総論-各種規制,代替フロンの種類,実用化のプロセス-	・ ダイキン工業(株	泉谷	直昭	16-5 (1995)	12
(2)	代替フロンの用途別実用化状況	- 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1	#	lasta		
	a)カーエアコンにおけるフロン規制対策	日本電装(株			16-5 (1995)	
	b)家庭用電気冷蔵庫	松下冷機(株		勝彦	16-5 (1995)	
	c)家庭用・業務用空調機の代替フロン技術の開発状況	(株)東芝		哲夫	16-5 (1995)	
(3)	代替冷媒用冷凍機油の開発について	出光興産(株		実	16-5 (1995)	
(4)	ヘテロ原子を含むフッ素系のフロン代替物の開発 	物質工学工業技術研究所		章	16-5 (1995)	45
		財) 地球環境産業技術研究機構	三崎	進		
	集]エネルギーと社会的リスク	, <u>-</u>		_*		
(1)	エネルギーシステムのリスク評価	(財)電力中央研究所	f 谷口	武俊	16-6 (1995)	16
(2)	地球温暖化問題における損害コスト評価および費用便益					
		(財)電力中央研究所		大志	16-6 (1995)	23
			E #17	24 =1		

(3) アジアにおける環境リスクマネージメント

ッ 長野 浩司

東京大学 明日香壽川 16-6(1995) 30

	題目	所	属	執筆	筆者	Vol.−No. (発行年)	頁
(4)	自然災害と人工災害のリスク比較	(財)電力中央研	空所	内山	洋司	16-6 (1995)	36
(1)	ロ無人日とハエ人日のラハノお叔	(財)政策科学研		林部	一尚	10 0 (1000)	00
(5)	事故リスクと安全評価	(株)三菱総合研		高橋	英明	16-6 (1995)	41
(6)	リスク・コミュニケーション:リスク研究への社会科学的アプロ			浅見	政江	16-6 (1995)	47
	<i>集]深海底資源</i>			1220		10 0 (1000)	.,
(1)	国連海洋法条約と深海底鉱物資源開発	資源エネルギ	一庁	菊池	英弘	17-1 (1996)	35
(2)	深海底鉱物資源の地質学的鉱物学的特徴	地質調		臼井	朗	17-1 (1996)	41
(3)	マンガン団塊揚鉱システムの流体力学的検討と問題点	京都		八田	夏夫	17-1 (1996)	50
(4)	深海鉱物資源の採鉱にかかる環境影響調査	金属鉱業事		森脇	久光	17-1 (1996)	57
(5)	マンガン団塊の精錬技術:海外の研究とわが国の現状	住友金属鉱山		甲賀	哲義	17-1 (1996)	64
(6)	資源社会論から見た深海底鉱物資源	京都	大学	西山	孝	17-1 (1996)	73
[特:	集]資源リサイクルの現状と展望						
(1)	総論: 資源リサイクルの現状と展望 (財) クリー	ーン・ジャパン・セン	ター	元田	欽也	17-2 (1996)	13
(2)	飲料容器のリサイクル	東京水産	大学	石川	雅紀	17-2 (1996)	19
(3)	プラスチックのリサイクル	EEP研	究所	冨川	昌美	17-2 (1996)	25
(4)	金属材料のリサイクル	金属材料技術研	究所	原田	幸明	17-2 (1996)	23
(5)	廃棄物のエネルギー・リサイクル	(財)政策科学研	究所	伊東原	慶四郎	17-2 (1996)	41
(6)	持続可能リサイクル設計	金属材料技術研	究所	長井	寿	17-2 (1996)	47
(7)	リサイクル社会形成のための制度	(株)ダイヤリサ	ーチ	早崎	胖	17-2 (1996)	53
[特:	集]エネルギー産業と規制緩和						
(1)	総論:経済的規制と社会的規制	学習院	大学	南部	鶴彦	17-3 (1996)	19
(2)	電気事業の規制緩和ー国際比較	(財)電力中央研	究所	矢島	正之	17-3 (1996)	23
(3)	電気料金と規制緩和	武蔵	大学	松川	勇	17-3 (1996)	29
(4)	石油産業の規制緩和とその影響	(株)大和	総研	伊藤	敏憲	17-3 (1996)	35
(5)	ガス産業の規制緩和に関する理論面の分析と課題	武蔵	大学	横倉	尚	17-3 (1996)	41
(6)	鉄鋼業のエネルギーと規制緩和	新日本製鐵	(株)	村田	稔	17-3 (1996)	47
(7)	LPガス産業と規制緩和	日本LPガス	協会	吉田	稔	17-3 (1996)	54
[特:	集]産業別エネルギーフロー						
(1)	総論	専修	大学	齋藤	雄志	17-4 (1996)	19
(2)	エネルギー供給事業						
	①電力供給のエネルギーフロー	(財)電力中央研	究所	浅野	浩志	17-4 (1996)	25
	②都市ガスエネルギーフロー	(社)日本ガス	協会	鈴木	耕三	17-4 (1996)	31
	③わが国石油産業のエネルギーフロー (財)	日本エネルギー経済研	究所	小川	芳樹	17-4 (1996)	37
(3)	鉄鋼業におけるエネルギーフロー (財)	日本エネルギー経済研	究所	坂田	直起	17-4 (1996)	44
(4)	紙パルプ産業のエネルギーフロー	日本製紙連	合会	高橋	確	17-4 (1996)	50
(5)	セメントにおけるエネルギーフロー	三菱マテリアル	(株)	増永	元彦	17-4 (1996)	55
(6)	運輸におけるエネルギーフロー (財)	日本エネルギー経済研	究所	佐川	直人	17-4 (1996)	59
[特:	集]建築とライフスタイル						
(1)	総論:建築とライフスタイル	京都	大学	中村	泰人	17-5 (1996)	14
(2)	建物におけるエネルギーの有効利用	北海道	大学	落藤	澄	17-5 (1996)	18
(3)	ビルの蓄熱式空調システム	三重	大学	相良	和伸	17-5 (1996)	24
(4)	住宅における電力負荷平準化	熊本	大学	石原	修	17-5 (1996)	30
(5)	建築におけるソーラーシステム標準化	工学院	大学	中島	康孝	17-5 (1996)	35
(6)	環境負荷軽減の建築	(株)日建	設計	伊香賀	買俊治	17-5 (1996)	43
(7)	住宅のエネルギー消費―暖房用を中心として―	東北	大学	吉野	博	17-5 (1996)	48
			"	長谷月	川兼一		
(8)	エネルギー消費とヒューマンファクター―住宅における居住	者の意識・住まい方—	-				
		京都府立	大学	松原	斎樹	17-5 (1996)	53
(9)	実験集合住宅NEXT21の居住実験評価 その1 設備研究サ	イドから 大阪ガス	(株)	志波	徹	17-5 (1996)	58

	題目	所属	執	筆者	Vol.−No. (発行年)	頁
(10)	実験集合住宅NEXT21の居住実験評価 その2 生活研究サ	ナイドから 大阪ガス(株)	加茂。	みどり	17-5 (1996)	63
	集]ライフサイクルアセスメント(LCA) -環境調和型社会の					
(1)	LCA手法	·/········ (財)電力中央研究所	内山	洋司	17-6 (1996)	19
(2)	LCA用データとソフトウエア	資源環境技術総合研究所		敦	17-6 (1996)	25
(3)	ライフサイクルアセスメント国際標準化の動向	(社)産業環境管理協会		哲男	17-6 (1996)	32
(4)	各論			п / з	., (1000)	0_
(1)	①家電製品のリサイクルへのLCAの適用—冷蔵庫を例とし	.たケーススタディ—				
	① 水电级阻4777 1777 - 4710 (47) 117 (17) (17)	関西大学	和田	安彦	17-6 (1996)	38
	②LCAに取り組むための課題と方向性―事務機械へのLC		чны	20	17 0 (1000)	00
		ディングル キヤノン(株)	伊藤	健司	17-6 (1996)	43
	③自動車のLCAの現状	日産自動車(株)	小林	紀	17-6 (1996)	50
		ロ゙゚゚゚゙゚゚゙゚゚゙゙゙゙゙゚゚゙゚゚゙゚゙゙゙゙゙゚゚゙゙゙゙゙゙゙゚゚゙゙゚゚゙゙゙゙		脩	17-6 (1996)	55
	⑤建築物のLCA—(株)竹中工務店におけるLCA及びLCC		宋尔	IΉ	17-0 (1990)	55
	少姓来物のLOA―(林/刊中工務店におけるLOA及びLOO?	(株)竹中工務店	奥田	清明	17-6 (1996)	61
<i>Γ1</i> ±±	集]ガスタービン・コンバイドプラント	(杯) 门中工伤后	类山	/H 1/J	17-0 (1990)	01
(1)	<i>乗」ハヘヌーロン・コンハイトンフント</i> 高温ガスタービンによる「システムエネルギー」開発	******	₩ 11	臣又	10 1 (1007)	20
		芝浦工業大学		賢忠	18-1 (1997)	32
(2)	コンバインドサイクル発電の現状と動向	東京電力(株)	宮本	_	18-1 (1997)	41
(3)	大型ガスタービンの高温・高効率化, 低NO _x 化への取り組				18-1 (1997)	47
(4)	小型ガスタービンによる熱電可変	東京ガス(株)	二浦	千太郎	18-1 (1997)	53
(5)	200t/日噴流床石炭ガス化発電パイロットプラントでの研究					
(-)		びス化複合発電技術研究組合 ************************************		康宏	18-1 (1997)	63
(6)	超高温水素燃焼タービンの研究開発	機械技術研究所	濱	純	18-1 (1997)	71
(7)	コジェネレーション用セラミックガスタービンの研究開発	S				
		- 一・産業技術総合開発機構	田村	茂	18-1 (1997)	77
	集]光エネルギー利用技術		_			
(1)	総論:エネルギー分野への光利用技術	(社) レーザー学会		光一	18-2 (1997)	11
(2)	レーザー核融合の開発動向と将来展望	大阪大学		圀興	18-2 (1997)	17
(3)	原子レーザー法・ウラン濃縮技術の開発	レーザー濃縮技術研究組合		昇	18-2 (1997)	22
(4)	放射光のエネルギー関連分野への応用	新居浜工業高等専門学校	· · · ·	宏一	18-2 (1997)	28
(5)	レーザー利用計測技術の現状-燃焼を中心にして-	石川島播磨重工業(株)		滋	18-2 (1997)	33
		"	小原	正孝		
(6)	レーザー誘雷技術の開発動向	(財)電力中央研究所		孝敏	18-2 (1997)	41
(7)	エネルギー輸送光技術の将来展望	財) レーザー技術総合研究所	今崎	一夫	18-2 (1997)	47
[特	集]エネルギー分野における新材料					
(1)	電力技術の中の材料技術	東京電力(株)	富山	朔太郎	18-3 (1997)	8
(2)	高温超電導材料の開発現状	ISTEC超電導工学研究所	腰塚	直己	18-3 (1997)	14
(3)	耐熱材料の高温ガスタービンへの適用	三菱重工業(株)	河合	久孝	18-3 (1997)	20
		"	岡田	郁生		
(4)	高分子系複合材料の構造物への用途とインテリジェント化	大阪大学	座古	勝	18-3 (1997)	27
		"	倉敷	哲生		
(5)	電解質材料:燃料電池などに適用	大阪工業技術研究所	宮崎	義憲	18-3 (1997)	34
(6)	高次機能調和材料の開発―セラミックス系ナノコンポジット	・を中心にして— 大阪大学	新原	晧一	18-3 (1997)	41
		"	上田	智		
		"	関野	徹		
		"	左	容昊		
(7)	触媒―天然ガス変換用触媒技術開発の最近の動向―	広島大学		勝臣	18-3 (1997)	50
(1)		物質工学工業技術研究所		聡	.5 5 (1007)	
[娃	集]蓄熱空調システムの現状と将来	7. 1. 一个人们的人们	////	れい		
(1)	<i>来」 音形 生調 ノ</i> ヘノ ユン 近	東京農工大学	亀山	秀雄	18-4 (1997)	32
(1)	№ 頭・雷 なびと河 C は	米尔辰工人子	电川	乃加	10 4 (1997)	32

2		題目	所属	執	.筆者	Vol.−No. (発行年)	頁
63	(2)	電力事情と蓄熱式空調システム	東京電力(株) 柳原	〔 隆司	18-4 (1997)	36
(株) 電力・					出 滋		41
「						, ,	
66 外			(財)電力中央研究所	f 内山	洋司	18-4 (1997)	47
行き大 一手機 一手機	(5)	水蓄熱空調システムの適用例	中部電力(株	渡邊	澂雄	18-4 (1997)	51
1 世オライト 特に	(6)	氷蓄熱システムの導入事例	高砂熱学工業(株) 小山	木時雄	18-4 (1997)	56
(1) ゼオライト―特に薔熱およびヒートポンブへの応用― 山口大学 海田 忠人 18-5(1997) 22 (2) 人工粘土 名古屋工業技術研究所 芝嶋 嫦娥 18-5(1997) 22 (3) ダイヤモンド 大阪ダイヤモンド工業体 一次 一次 18-5(1997) 22 (4) 酸化チタン 塚化学工業体 一次 一次 一次 18-5(1997) 34 (5) フェライト系磁性材料の製造と応用 同和鉱業体 一田 俊娥 18-5(1997) 40 (6) 高強度・高動性ジルコニア 東ソー(株) 大員 理治 18-5(1997) 40 (7) 人工アパライトバイオセラミック 東ソー(株) 大員 理治 18-5(1997) 40 (8) 素材大学 後 機人 一次 東ソー(株) 大員 理治 18-5(1997) 40 (7) 人工アパライトバイオセラミック 東ソー(株) 大員 理治 18-5(1997) 40 (8) 素材大学 後 機人 一次 一次 18-5(1997) 40 (7) 本力が入りが入りが入りが入りが入りが入りが入りが入りが入りが入りが入りが入りが入りが	(7)	蓄熱空調システムの将来の普及規模	京都大学	永田 永田	豊	18-4 (1997)	61
公 八工牝土 名古屋工業技術研究所 元 京 京 京 京 京 京 京 京 京	[特:	集]人工鉱物:その製法と応用					
3	(1)	ゼオライト―特に蓄熱およびヒートポンプへの応用―	山口大学	大 溝田	l 忠人	18-5 (1997)	15
4 日本 日本 日本 日本 日本 日本 日本	(2)	人工粘土	名古屋工業技術研究所	f 芝崎	靖雄	18-5 (1997)	22
5 プェライト系磁性材料の製造と応用 同和鉱業(株) に関 機越 18-5 (1997) 40 40 表記で、高靱性ジルコニア 東ソー(株) 大規 理治 18-5 (1997) 45 表記で、	(3)	ダイヤモンド	大阪ダイヤモンド工業(株	富森	紘	18-5 (1997)	28
高強度・高靱性ジルコニア 東ソー(株)	(4)	酸化チタン	堺化学工業材	ト 仲辻	忠夫	18-5 (1997)	34
日本学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学	(5)	フェライト系磁性材料の製造と応用	同和鉱業(株	上田	俊雄	18-5 (1997)	40
京都大学 接換 接換のリサイクル技術 京都大学 表出 係出 係出 日本 日本 日本 日本 日本 日本 日本 日	(6)	高強度・高靱性ジルコニア	東ソー(株) 大貝	理治	18-5 (1997)	46
「1	(7)	人工アパタイトーバイオセラミックー			功一	18-5 (1997)	53
(1) 総論:大量副産物の資源化・リサイクル 京都大学 武田 信生 18-6 (1997) 14 (2) 石炭火力における副産物の有効利用技術—石炭灰の有効利用 電気等業連合会 電源開発(株) 波部 正道 18-6 (1997) 20 電源開発(株) 波部 正道 20 東海火力における燃焼灰の資源化・有効利用—重油燃焼灰からパナジウム回収 新興化学工業(株) 塚越 野北 18-6 (1997) 31 (5) 都市ごみ焼却灰の資源化 (株)カボタ 阿部 清一 18-6 (1997) 31 (5) 都市ごみ焼却灰の資源化 (株)カボタ 阿部 清一 18-6 (1997) 36 (6) 鉄鋼スラグとその資源化一製鉄工場副産物のリサイクルー			京都大学	色筏	義人		
名談人力における副産物の有効利用技術―石炭灰の有効利用 電気事業連合会							
電源開発(株) 渡部 正過 上記 上記 上記 上記 上記 上記 上記 上							14
3 1	(2)	石炭火力における副産物の有効利用技術—石炭灰の有				18-6 (1997)	20
) 渡部	正道		
1	(3)	重油火力における燃焼灰の資源化・有効利用―重油燃炸					
「おっぱり で							
(6) 鉄鋼スラグとその資源化―製鉄工場副産物のリサイクル―							
18				四当	清一	18-6 (1997)	36
食品産業における廃棄物とその再資源化 食品産業エコ・プロセス技術研究組合 横川 龍鳳 「日本製紙(株) 7年 7年 7年 7年 7年 7年 7年 7	(6)	鉄輌スフクとその貧源化──製鉄工場副産物のリサイクル		LLF	· 4-	10.0(1007)	40
食品産業エコ・プロセス技術研究組合 横川 龍鳳 18-6 (1997) 55 18-6 (1997	(7)	今日 主要におけて広奔畑しての正次近ル					
68 紙パルプ産業におけるサーマル・リサイクル技術 日本製紙(株) 28 28 28 19-1 (1998) 29 29 20 25 2	(7)					18-6 (1997)	49
(特集)大ドーム建築のエネルギー・環境保全 (1) 大ドーム建築の省エネルギー計画 鹿島建設(株) 早川 真 19-1 (1998) 29 (2) 大ドーム建築の環境保全計画 (株) 竹中工務店 高井 啓明 19-1 (1998) 32 (3) 大阪ドームの省エネルギー計画 (株) 日建設計 大高 一博 19-1 (1998) 40 (4) ナゴヤドームにおけるエネルギーの有効利用 (株) 竹中工務店 小西 菜 19-1 (1998) 47 (4) ナゴヤドームにおけるエネルギーの有効利用 (株) 竹中工務店 小西 菜 19-1 (1998) 47 (5) 長野オリンピック冬季競技大会アイスホッケーA会場 長野市若里多目的アリーナ「ビッグ・ハット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(0)					10 6 (1007)	E E
(1) 大ドーム建築の省エネルギー計画			口个袋机(休	注口	1 元昭	18-6 (1997)	55
(2) 大ドーム建築の環境保全計画 (株) 竹中工務店 高井 啓明 19-1 (1998) 32 (3) 大阪ドームの省エネルギー計画 (株) 日建設計 大高 中博 19-1 (1998) 40 (4) ナゴヤドームにおけるエネルギーの有効利用 (株) 竹中工務店 小西 常 栄 19-1 (1998) 47 (5) 長野オリンピック冬季競技大会アイスホッケーA会場 長野市若里多目的アリーナ「ビッグ・ハット サー島 混人 第一 (1998) 53 (5) 長野オリンピック冬季競技大会アイスホッケーB会場「アクアウイング」(株) 山下設計 中島 正人 第一 (1998) 19-1 (1998) 53 (6) ホワイトリング (株) 日建設計 青木 七郎 19-1 (1998) 62 (6) ホワイトリング (株) 日建設計 青木 七郎 19-1 (1998) 62 (7) 地域に密着したサンドーム福井の建設 京都大学 同端 25・ 京都大学 同端 25・ 19-1 (1998) 68 (持集) 地球環境を計測する (財) リモート・センシング技術センター 同井 幸男 19-2 (1998) 13 (2) 成層圏オゾン及びオゾン層破壊関連物質の観測 国立環境研究 中根 安昭 19-2 (1998) 13			毎 色 建 弘 / 姓		古	10_1 (1000)	20
(3) 大阪ドームの省エネルギー計画 (株)日建設計 大高 一博 19-1 (1998) 40 (4) ナゴヤドームにおけるエネルギーの有効利用 (株)竹中工務店 小西 栄 19-1 (1998) 47							
(4) ナゴヤドームにおけるエネルギーの有効利用 (株) 竹中工務店 小西 栄 19-1 (1998) 47 (5) 長野オリンピック冬季競技大会アイスホッケーA会場 長野市若里多目的アリーナ「ビッグ・ハット」 大湯 正人 19-1 (1998) 53 (5) 長野オリンピック冬季競技大会アイスホッケーA会場 長野市若里多目的アリーナ「ビッグ・ハット」 次線 俊一 19-1 (1998) 53 (5) 長野オリンピック冬季競技大会アイスホッケーB会場「アクアウイング」 (株) 山下設計 中島 正人 中島 正人 正人 19-1 (1998) 62 (6) ホワイトリング (株) 日建設計 青木 七郎 19-1 (1998) 62 (7) 地域に密着したサンドーム福井の建設 京都大学 同崎 基本 19-1 (1998) 68 【特集】地球環境を計測する 19-2 (1998) 13 (1) 衛星を用いたリモートセンシングの現状 (財) リモート・センシング技術センター 向井 幸男 19-2 (1998) 13 (2) 成層圏オゾン及びオゾン風破壊関連物質の観測 国立環境研究所 中根 英昭 19-2 (1998) 19							
(4) ナゴヤドームにおけるエネルギーの有効利用 (株) 竹中工務店 小西 栄 19-1 (1998) 47	(0)					10 1 (1000)	70
(5) 長野オリンピック冬季競技大会アイスホッケーA会場 長野市若里多目的アリーナ「ビッグ・ハット」 (株)山下設計 中島 正人 19-1 (1998) 53 (佐藤野オリンピック冬季競技大会アイスホッケーB会場「アクアウイング」 (株)山下設計 中島 正人 大湯 満晴 (条) 中島 で大りないりである (株)日建設計 青木 七郎 19-1 (1998) 62 (大藤 大田 大郎 大郎 19-1 (1998) 62 (大藤 大田 大郎 大郎 19-1 (1998) 62 (大藤 大田 大郎 大郎 大郎 19-1 (1998) 62 (大藤 大田 大郎 大郎 19-1 (1998) 68 (大藤 大田 大郎 大郎 大郎 19-1 (1998) 68 (大藤 大田 大郎 大郎 大郎 19-1 (1998) 68 (大藤 大郎 大郎 大郎 大郎 大郎 大郎 19-2 (1998) 13 (大藤 大郎 19-2 (1998) 13 (大藤 大郎 大郎 大郎 大郎 大郎 大郎 大郎 大郎 19-2 (1998) 13	(4)	ナゴヤドームにおけるエネルギーの有効利用				19–1 (1998)	47
(5) 長野オリンピック冬季競技大会アイスホッケーA会場 長野市若里多目的アリーナ「ビッグ・ハット」 (株)山下設計 中島 正人 19-1 (1998) 53 (表野オリンピック冬季競技大会アイスホッケーB会場「アクアウイング」 (株)山下設計 中島 正人 正人 上 上 上 大湯 満晴 19-1 (1998) 62 (6) ホワイトリング 木ワイトリング (株)日建設計 青木 七郎 19-1 (1998) 62 (7) 地域に密着したサンドーム福井の建設 京都大学 岡崎 基幸 19-1 (1998) 68 [特集]地球環境を計測する 中機 英男 19-2 (1998) 13 (1) 衛星を用いたリモートセンシングの現状 (財)リモート・センシング技術センター 向井 幸男 19-2 (1998) 13 (2) 成層圏オゾン及びオゾン層破壊関連物質の観測 国立環境研究所 中根 英昭 19-2 (1998) 19	(1)	7 - () = 1000				10 1 (1000)	.,
(5) 長野オリンピック冬季競技大会アイスホッケーA会場 長野市若里多目的アリーナ「ビッグハット」 (株)山下設計 中島 正人 19-1 (1998) 53 " 安藤 俊一 長野オリンピック冬季競技大会アイスホッケーB会場「アクアウイング」 (株)山下設計 中島 正人 次 流晴 (株)日建設計 青木 七郎 19-1 (1998) 62 (6) ホワイトリング (株)日建設計 青木 七郎 19-1 (1998) 62 (7) 地域に密着したサンドーム福井の建設 京都大学 岡崎 甚幸 19-1 (1998) 68 【特集】地球環境を計測する (1) 衛星を用いたリモートセンシングの現状 (財)リモート・センシング技術センター 向井 幸男 19-2 (1998) 13 (2) 成層圏オゾン及びオゾン層破壊関連物質の観測 国立環境研究所 中根 英昭 19-2 (1998) 19							
(株)山下設計 中島 正人 19-1 (1998) 53 安藤 俊一 長野オリンピック冬季競技大会アイスホッケーB会場「アクアウイング」 (株)山下設計 中島 正人 バ 大湯 満晴	(5)	長野オリンピック冬季競技大会アイスホッケーA会場 長野	野市若里多目的アリーナ「ビ				
## 表野オリンピック冬季競技大会アイスホッケーB会場「アクアウイング」(株)山下設計 中島 正人	(0)				_	19-1 (1998)	53
長野オリンピック冬季競技大会アイスホッケーB会場「アクアウイング」 (株)山下設計 中島 正人 次 大湯 満晴(6) ホワイトリング (株)日建設計 青木 七郎 19-1 (1998) 62(7) 地域に密着したサンドーム福井の建設 京都大学 岡崎 甚幸 19-1 (1998) 68[特集]地球環境を計測する(1) 衛星を用いたリモートセンシングの現状 (財)リモート・センシング技術センター 向井 幸男 19-2 (1998) 13(2) 成層圏オゾン及びオゾン層破壊関連物質の観測 国立環境研究所 中根 英昭 19-2 (1998) 19						(,	
(6)ホワイトリング(株)日建設計 (株)日建設計 (株)日建設計 (株)日建設計 (株)日建設計 (株)日建設計 (株)日建設計 		長野オリンピック冬季競技大会アイスホッケーB会場「アク	ファウイング」 (株)山下設詞				
# 湯澤 秀樹 (7) 地域に密着したサンドーム福井の建設 京都大学 岡崎 甚幸 19-1 (1998) 68 [特集]地球環境を計測する (1) 衛星を用いたリモートセンシングの現状 (財)リモート・センシング技術センター 向井 幸男 19-2 (1998) 13 (2) 成層圏オゾン及びオゾン層破壊関連物質の観測 国立環境研究所 中根 英昭 19-2 (1998) 19							
(7) 地域に密着したサンドーム福井の建設 京都大学 岡崎 甚幸 19-1 (1998) 68 [特集] 地球環境を計測する (1) 衛星を用いたリモートセンシングの現状 (財)リモート・センシング技術センター 向井 幸男 19-2 (1998) 13 (2) 成層圏オゾン及びオゾン層破壊関連物質の観測 国立環境研究所 中根 英昭 19-2 (1998) 19	(6)	ホワイトリング	(株)日建設詞			19-1 (1998)	62
 [特集]地球環境を計測する (1) 衛星を用いたリモートセンシングの現状 (財)リモート・センシング技術センター 向井 幸男 19-2 (1998) 13 (2) 成層圏オゾン及びオゾン層破壊関連物質の観測 国立環境研究所 中根 英昭 19-2 (1998) 19 					秀樹		
 [特集]地球環境を計測する (1) 衛星を用いたリモートセンシングの現状 (財)リモート・センシング技術センター 向井 幸男 19-2 (1998) 13 (2) 成層圏オゾン及びオゾン層破壊関連物質の観測 国立環境研究所 中根 英昭 19-2 (1998) 19 	(7)	地域に密着したサンドーム福井の建設	京都大学	色 岡崎	甚幸	19-1 (1998)	68
(2) 成層圏オゾン及びオゾン層破壊関連物質の観測 国立環境研究所 中根 英昭 19-2 (1998) 19	[特:						
	(1)	衛星を用いたリモートセンシングの現状 (財)リモー	ト・センシング技術センター	- 向井	幸男	19-2 (1998)	13
(3) 二酸化炭素の計測と濃度変動 東北大学 田中 正之 19-2(1998) 25	(2)	成層圏オゾン及びオゾン層破壊関連物質の観測	国立環境研究所	f 中根	. 英昭	19-2 (1998)	19
	(3)	二酸化炭素の計測と濃度変動	東北大学	生 田中	正之	19-2 (1998)	25

(10) 熱化学水素製造プロセスUT-3環境における高温耐食材料

19-5 (1998) 56

東京大学

"

"

篠原

高平

辻川 茂男

正

史郎

-	題目	所 属	執	筆者	VolNo. (発行年)	頁
[特:	集]地域熱供給の新動向					
(1)	地域熱供給事業の将来展望	(社)日本熱供給事業協会	立田	修	19-6 (1998)	16
(2)	特定電気事業制度下での地域熱供給事業	(株)竹中工務店	茂呂	隆	19-6 (1998)	22
(3)	未利用エネルギー活用地域熱供給システム	関西電力(株)	江川	和彦	19-6 (1998)	29
(4)	大型火力発電所排熱活用地域熱供給システム 和歌	欧山マリーナシティ熱供給(株)	井川	広之	19-6 (1998)	36
(5)	都市ガス圧力エネルギー回収発電活用地域熱供給シス	ステム 大阪ガス(株)	杉山	修	19-6 (1998)	41
(6)	マレーシアクアラルンプール新国際空港のコージェネレ					
• •		東京ガス(株)	中根	伸一	19-6 (1998)	46
(7)	ふゆ未来2010プロジェクト―新北方型都市整備プラング			••		
(,,	Say State Control in State Control in the Control i	北海道大学	落藤	澄	19-6 (1998)	54
		(財)北海道地域総合振興機構		宣行	(1000)	٠.
		(株)藤原環境科学研究所		陽三		
<i>「</i> 娃	集]ダイオキシンーその問題点と対策の方向ー	(14) 18 11 3 3 11 3 11 3 11 3 11 3 11 3 11	TOPK IVIN	190 —		
(1)	・ダイオキシン類によるリスクの評価	第一薬科大学	増田	義人	20-1 (1999)	37
(2)	ダイオキシンの健康影響	カー 未行 ステム 広島大学		養生	20-1 (1999)	44
(3)	ダイオキシン類による環境汚染とリスク	ム		季工 秀明	20-1 (1999)	47
	ダイオキシン類による環境方案とリスク	•	-			4 / 55
(4)		国立環境研究所		昭夫	20-1 (1999)	
(5)	ダイオキシン等の分析法の進歩とモニタリング	国立環境研究所		昌敏	20-1 (1999)	61
(6)	ダイオキシン類の発生源と生成抑制対策	京都大学		伸一	20-1 (1999)	70
(7)	ダイオキシン類の分解技術	関東学院大学	川本	克也	20-1 (1999)	78
	集] 発電技術の最近の動向	ᄱᄭᇎᄔᆠᆂᆓᆓ	 .1.	~~ —	00 0 (1000)	0.4
(1)	発電技術の高効率化に向けた技術動向	(財)電力中央研究所			20-2 (1999)	21
(2)	超微粒水噴霧によるガスタービン増出力システム	(株)日立製作所		村元昭	20-2 (1999)	27
(3)	燃料電池複合発電技術の開発	三菱重工業(株)	高塚	汎	20-2 (1999)	32
(4)	石炭ガス化複合発電システム	東京電力(株)	寺田	斉	20-2 (1999)	37
(5)	LNG冷熱利用発電の現状と将来システム	大阪ガス(株)	久角	喜徳	20-2 (1999)	43
(6)	MHD発電の動向	筑波大学	石川	本雄	20-2 (1999)	49
	集]エネルギー教育					
(1)	教育現場からの声―小・中学校におけるエネルギー教	育の現状―				
		大阪府教育センター	秦	健吾	20-3 (1999)	16
(2)	教育現場からの声―教科書にみる高等学校におけるエ	ニネルギー教育の現状―				
		日本基礎化学教育学会		光男	20-3 (1999)	20
(3)	大学におけるエネルギー教育―京都大学エネルギー科	学研究科における取り組み-	-			
		京都大学	伊藤	靖彦	20-3 (1999)	25
(4)	イギリスにおけるエネルギー教育の現状	東京女学館中・高等学校	柄山	正樹	20-3 (1999)	32
(5)	米国におけるエネルギー教育の新しい方向	筑波大学	長洲	南海男	20-3 (1999)	37
(6)	電力関連のエネルギー教育への取り組み	東京電力(株)	大浦	宗敏	20-3 (1999)	42
(7)	石油関連のエネルギー教育への取り組み	(社)石油学会	南谷	弘	20-3 (1999)	46
(8)	石炭関連のエネルギー教育への取り組み	(財) 石炭利用総合センター	今井	隆	20-3 (1999)	50
(9)	天然ガス関連のエネルギー教育への取り組み	大阪ガス(株)	町井	令尚	20-3 (1999)	56
[特:	集]原子燃料サイクルの新動向					
(1)	総論	京都大学	東	邦夫	20-4 (1999)	19
(2)	エネルギー資源としての原子力	(財)電力中央研究所	池本	一郎	20-4 (1999)	25
(3)	軽水路におけるMOX燃料の利用(プルサーマル)	関西電力(株)	後藤	健	20-4 (1999)	32
(4)	高速増殖炉ーFBR	日本原子力発電(株)	植田	正弘	20-4 (1999)	39
(5)	使用済燃料の中間貯蔵	東京電力(株)		一弘	20-4 (1999)	
(-)		ススモン (水)	#1171X	J.A.		.0

(6) 使用済み燃料の再処理

(7) 高レベル放射性廃棄物の処分に向けての現状

陶山 尚宏 20-4(1999) 53

日本原燃(株)

核燃料サイクル開発機構 虎田真一郎 20-4 (1999) 58

所

(7)	ᆄᆎᅚᆉᇆᆉᇧᆛᄀᄝᄜᅅᅺᆉᅩᄼᆘᄼᄁᅟᅕᄳᄀᆕᆄᅩᅗᅝᆘᇎᄼ	H+++				
(7)	植林活動における国際協力の状況―東部アマゾン荒廃地での				/>	
r#+	卷77回44 4 74 66 1 76 ~ 4 71 4 *	ブラジル永大木材(株)	佐藤	卓司	21–2 (2000)	56
	<i>集]環境共生建築と省エネルギー</i>	ᅩᇛᇴᆓᅩᅅ	10. 1	/ 1 -	04 0 (0000)	40
(1)	環境共生建築の現状と展望	大阪産業大学	松本	第一大学	21-3 (2000)	12
(2)	寒冷地における環境共生建築	北海道大学	繪内	正道	21-3 (2000)	18
(3)	温暖地における住宅の高断熱化と環境負荷低減	東京理科大学	井上	隆	21-3 (2000)	23
(4)	環境共生住宅における建築物緑化の居住者および周辺住民に					
	―NEXT21における住居実験を通じて―	京都大学	髙田	光雄 -	21–3 (2000)	28
(5)	業務用建築への環境共生手法の導入とその省エネルギー効果				01 0 (0000)	25
(6)	環境共生建築の海外における動向	(株)日建設計 神戸芸術工科大学		一博 佑一郎	21-3 (2000) 21-3 (2000)	35 43
	集]環境型社会と包装技術	1年广云州工14八十	11.77	נוב 11	21 3 (2000)	40
(1)	<i>乗」環境至社会と召表技術</i> 最近の包装技術—98、99日本パッケージングコンテストから	(社)日本包装技術協会	/± /-	木春夫	21-4 (2000)	19
(2)	家電製品の包装技術	三菱電機(株)	前澤	英一	21-4 (2000)	25
(3)	後合包装材の接着技術 変合包装材の接着技術	正愛电版(怀) 藤森工業(株)	髙橋	亨	21-4 (2000)	29
(4)	後			ァーラ きゅうしょう こうしょう こうしょう こうしん きゅうしん かいしん かいしん かいしん かいしん かいしん かいしん かいしん かい	21-4 (2000)	34
(5)		リサイクル推進協議会	古问 [。] 荒木	字四寸 享	21-4 (2000)	34 41
(6)		東洋製罐(株)		子 慶雄	21-4 (2000)	• •
	容器・包装のLCA		沖上屋		, ,	46
(7) <i>ra</i> ±	容器包装リサイクル法 (財)日本容 集] 進歩する燃料電池技術	器包装リサイクル協会	土居	敬和	21–4 (2000)	52
	<i>乗」進少りの燃料电池技術</i> 燃料電池の今後	楼 海田五十尚	+ m <i>i</i> :	建一郎	01 E (0000)	17
(1)		横浜国立大学			21-5 (2000)	17
(2)	りん酸形燃料電池の新用途	(株)東芝	木村	正	21-5 (2000)	23
(3)	溶融炭酸塩形燃料電池―パイロットプラントから実用化―	ショニ/世朱珥克织ム	松	:古	01 E (0000)	20
(4)	溶融炭酸塩型燃料電池発電 高効率発電をねらう固体電解質型燃料電池 新エネルギー・	システム技術研究組合 産業技術総合開発機構	幹 鈴木	淳 稔	21-5 (2000) 21-5 (2000)	28
(4)		<u> </u>		忆 久		33 38
(5)	各種燃料による燃料電池自動車(FCEV)の総合効率評価	果尔入子	石谷 馬場	康子	21-5 (2000)	38
	(計) エラ	ルギー総合工学研究所	小林	尿宁紀		
(6)	(対) エヤ 固体高分子形燃料電池による家庭用コージェネレーション	(社)日本ガス協会	伊中	秀樹	21-5 (2000)	47
(7)	■ 本高力 丁ル 然 付 電 心 による 家庭	大阪工業技術研究所		和明	21-5 (2000)	
	・アフィール自接主席行电池の本本 集 <i>]エネルギーシステムの外部性研究―広域環境影響と重大事</i>		ΧШ	<i>የ</i> ሀ ዓን	21 3 (2000)	55
(1)	<i>乗」エネルマー システムのアド語は切えー四々な気が音と重入す。</i> 総論∶エネルギー外部性研究の概要	(財)政策科学研究所	伊宙原	慶四郎	21-6 (2000)	10
(2)	環境影響評価の方法論	筑波大学		洋司	21-6 (2000)	16
(3)	外部性費用評価の理論的側面:環境の経済的評価手法	立正大学	關	哲雄	21-6 (2000)	
(0)	アロロス 八子 画の 生品の 関係・東名の にみい 一丁 人	· · · · · · · · · · · · · · · · · · ·	庭田	文近	21 0 (2000)	21
(4)	外部費用評価の実証的側面:公衆の健康損害に関するエネル:			~~		
(7/	/1 Hr 火ニョニ 重く 人間 H J 区間・4 大く 圧 不 兄 日 「 一 方 」 の 十 个 ブ・	で がいけい 正徳大学	松川	勇	21-6 (2000)	26
(5)	各発電システムの外部費用:化石燃料	(財)政策科学研究所	林部	尚	21-6 (2000)	30
(0)	原子力発電システム	(別) 政衆行子 明7677	勝木	知里	21 0 (2000)	00
	再生可能発電システム	(財)電力中央研究所	西村			
(6)	重大事故リスクの評価	(財)政策科学研究所	川島	啓	21-6 (2000)	39
(7)	マステム・ハンショー	(財)電力中央研究所	谷口	武俊	21-6 (2000)	
	4777 国に3517 公元電ンハナムのアドロロエー画の 矢池に同けて <i>集]21世紀への世界からのメッセージ</i>	(M)/ =/3 / M /U /	п	₩ 100	2. 0 (2000)	τ- τ
(1)	21世紀におけるエネルギー資源と環境に関するメッセージ	大韓民国	孫	宰翼	22-1 (2001)	19
\ - /		//	申	兹東	. ,/	
(2)	韓国における建設産業と環境	大韓民国	· 金	會瑞	22-1 (2001)	22
(3)	中国における持続可能なエネルギー開発への道	中華人民共和国		 Zou Ji	22-1 (2001)	25
(4)	エネルギーと環境:クリーンエネルギー利用をめざすインドネシ			rimana	22-1 (2001)	28
(5)	再生エネルギーと発電:タイ国の理解と現実	タイ王国		ng Kirtikara	22-1 (2001)	
/					/	

	題 目	所原	執	筆者 ———	Vol.−No. (発行年)	頁
(6)	インドエネルギー産業における問題点と可能性	イン		Mathur Krishnan	22-1 (2001)	34
(7)	21世紀のジョルダンにおけるエネルギー・資源・環境 ジョ	ルダン・ハシェミット王	<u>∓</u> Ibrahiπ	n O. I Mango	22-1 (2001)	38
(8)	エネルギーと環境面から見た電気自動車とハイブリッド車-	—21世紀に向けて—				
		イスラエル	≣ Yoram	Zvirin	22-1 (2001)	42
			// Miche	l Parent		
(9)	南アフリカにおける持続可能なエネルギーの開発:中長期	的なエネルギー・社会・環	境関係の)最適化	;	
		南アフリカ共和	玉 Mark I	. Howells	22-1 (2001)	46
(10)	熱的および動力学的非平衡システムによるメタンの転換	ベラルーシ共和	₹ Serguei	i . A. Zhdanok	22-1 (2001)	51
(11)	省エネルギーと健康な室内環境―きたるべき時代へのヴィ	ィジョン— スウェーデン王	₹ Ingemar	r. Samuelson	22-1 (2001)	54
(12)	新世紀初頭のイタリアにおけるエネルギー、資源、環境、お	および芸術 イタリア共和	国 Fabi	o Gori	22-1 (2001)	57
(13)	21世紀における分散型電源	オランダ王	虱 J. var	n Liere	22-1 (2001)	61
(14)	電池用負極材料として有望な炭素材料	フランス共和	₹ Serge	Flandrois	22-1 (2001)	64
(15)	持続可能な発展下での効率的エネルギー利用への挑戦	フランス共和	国 J. La	abeyrie	22-1 (2001)	67
(16)	分散型エネルギー指向へのパイオニアーコージェネレーシ	当ン英	国 Simon	Minett	22-1 (2001)	70
(17)	21世紀に向けたエネルギーと環境への挑戦ーブラジル	ブラジル連邦共和	国 J.M	. Maeda	22-1 (2001)	74
			v T. Mo	rokawa		
(18)	21世紀のクリーンエネルギーおよび超クリーン燃料に関わ	る触媒研究の将来像				
		アメリカ合衆	E Chuns	han Song	22-1 (2001)	77
(19)	21世紀に向けた化石燃料	アメリカ合衆	国 J.W.	Larsen	22-1 (2001)	82
(20)	21世紀におけるエネルギー需要のインパクト	アメリカ合衆	玉 F.A.W	lilliams	22-1 (2001)	85
(21)	アメリカ的生活:その省エネルギー, 環境, 健康への思考	アメリカ合衆	国 山本	儀子	22-1 (2001)	88
[特	集]エネルギー貯蔵技術のフロンティアー地下空間-					
(1)	エネルギー貯蔵と地下空間の利用	京都大	学 青木	謙治	22-2 (2001)	10
(2)	電力エネルギーの貯蔵施設—新しい揚水発電システム	電源開発(构	:) 堀	正幸	22-2 (2001)	15
(3)	電力エネルギーの貯蔵施設—圧縮空気貯蔵(CAES)	(財)電力中央研究	听 中川加	吅明一郎	22-2 (2001)	19
(4)	燃料の地下貯蔵—原油岩盤タンク	日本地下石油備蓄(株	:) 岡本	明夫	22-2 (2001)	25
(5)	燃料の地下貯蔵―液化石油ガス, LNG—	鹿島建設(株	的 阿部	裕	22-2 (2001)	30
(6)	低温および高温物質の地山岩盤内貯蔵	愛媛大!	学 稲田	善紀	22-2 (2001)	35
[特	集]廃棄物の資源化・エネルギー化					
(1)	廃棄物の資源化・エネルギー化	京都大!		信生	22-3 (2001)	10
(2)	廃棄物発電技術の現状	(財)エネルギー総合工学研究	听 小川	紀一郎	22-3 (2001)	15
(3)	下水汚泥の資源化	豊橋技術科学大	学 笠倉	忠夫	22-3 (2001)	20
(4)	家畜ふん尿のコンポスト化	大阪府立農林技術センタ	- 崎元		22-3 (2001)	26
(5)	建設廃材の再利用	東京大			22-3 (2001)	32
(6)	廃家電処理の取り組み	元 松下電器産業(株			22-3 (2001)	39
(7)	厨芥類を中心とする今後のごみ処理システムの方向性に	ついて京都市環境	高 中村	一夫	22-3 (2001)	44
	集]ヒートアイランド					
(1)	ヒートアイランドの現状と課題	東北大			22-4 (2001)	18
(2)	ヒートアイランドのメカニズムとモデリング	京都大			22-4 (2001)	23
			" 石川			
			" 堀口	光章		
(3)	都市の人口排熱とヒートアイランド―江戸と現在の都市気候					
		東北大			22-4 (2001)	30
		東北工業大				
(4)	広域気象とヒートアイランド「環八雲」	名古屋大			22-4 (2001)	36
(5)	ヒートアイランドと地球環境問題「地方自治体における取り	_		瀬俊明	22-4 (2001)	41
(6)	ヒートアイランドの緩和方策「風の道とクリマアトラス」	神戸大	学 森山	正和	22-4 (2001)	46

(7)	ヒートアイランドの緩和方策―地域熱供給システム, 地盤	受萎熱 地下ヒートシンノク				
(1)	L─ト/イプントの版和力束──地域於供和フへ/ム, 地登	金番級、地下に一トクラケー (独)産業技術総合研究所	玄地	裕	22-4 (2001)	50
[特]	集]エネルギー市場の自由化		2-0	14	22 1 (2001)	00
(1)	諸外国における電力市場自由化の動向					
	①英国—10年の運用を経て再び大改革へ—	(社)海外電力調査会	奈良	長寿	22-6 (2001)	9
	②フランス―最低限の自由化にEUから開放圧力―	(社)海外電力調査会	高井	幹夫	22-6 (2001)	12
	③ドイツ—英・米・北欧諸国と異なる自由化形態—	(社)海外電力調査会	伊勢	公人	22-6 (2001)	15
	④北欧—国際自由電力市場の成り立ち—	(社)海外電力調査会	栗村	卓弥	22-6 (2001)	18
	⑤米国—混迷する小売自由化、総合される卸電力市場・	— (社)海外電力調査会	高橋	直子	22-6 (2001)	20
(2)	日本における電力市場自由化の動向	(財)電力中央研究所	矢島	正之	22-6 (2001)	23
(3)	電力自由化に伴う電力システムの技術的課題	(財)電力中央研究所	林	敏之	22-6 (2001)	27
(4)	諸外国におけるガス市場自由化の動向					
	①アメリカ ()	財)日本エネルギー経済研究所	土屋	義幸	22-6 (2001)	31
	②アジア(韓国・台湾・オーストラリア) (貝	財)日本エネルギー経済研究所	青山	明	22-6 (2001)	35
	③ヨーロッパ (月	財)日本エネルギー経済研究所	長阪	伸哉	22-6 (2001)	38
(5)	日本におけるガス市場自由化の動向(原	財)日本エネルギー経済研究所	鈴木	健雄	22-6 (2001)	42
(6)	ガス自由化に伴うガスシステムの技術課題(『	財)日本エネルギー経済研究所	佐野	智	22-6 (2001)	47
		"	森本	和彦		
(7)	エネルギー業界の再編と新ビジネスの展開 (財)日本エネルギー経済研究所	小川	芳樹	22-6 (2001)	52
[特]	集] 環境調和型社会を支えるエコマテリアル					
(1)	エコマテリアルとは何か	(独)物質・材料研究機構	原田	幸明	23-1 (2002)	21
(2)	EcoMaterialsの社会・経済要素	北九州市立大学	村田	朋美	23-1 (2002)	27
(3)	人間環境にやさしいエネルギーシステムのためのエコマ	テリアル 東海大学	内田	裕久	23-1 (2002)	30
(4)	環境適合型マニュファクチャリングシステムへの転換とエ	ニコマテリアル 東京大学	相沢	龍彦	23-1 (2002)	35
(5)	環境浄化のための機能系エコマテリアル	(独)物質・材料研究機構	渡辺	遵	23-1 (2002)	40
(6)	自動車に用いられるエコマテリアルとしての燃結部品	日産自動車(株)	藤木	章	23-1 (2002)	44
		熊本大学	三浦	秀士		
(7)	建築素材におけるエコマテリアルの使用	北九州市立大学	福島	敏夫	23-1 (2002)	48
	集 <i>] 海洋資源・エネルギー</i>					
(1)	深海底資源の開発と経済的採算	日本文理大学	八田	夏夫	23-2 (2002)	9
		II .		利浩		
		<i>II</i>		中秀樹		
(2)	マンガン団塊およびコバルトリッチクラストの開発	金属鉱業事業団	増田	信行	23-2 (2002)	17
(3)	日本周辺海域の海洋鉱物資源に対する主権的権利―国					
		鹿児島大学	志賀		23-2 (2002)	22
(4)	深海底熱水鉱床の探査	(独)産業技術総合研究所	飯笹	幸吉	23-2 (2002)	27
(5)	ガスハイドレートの化学組成と物理的性質	(独)産業技術総合研究所	内田	努	23-2 (2002)	31
(6)	メタンハイドレートの探査と開発の動向	東京大学	藤田	和男	23-2 (2002)	35
(7)	海水中のウラン回収の動向	日本原子力研究所	須郷	高信	23-2 (2002)	42
(8)	海洋温度差発電の現状と将来展望	佐賀大学	上原	春男	23-2 (2002)	46
(9)	波力発電の現状と将来	海洋科学技術センター	緒方	輝久	23-2 (2002)	50
	集] 分散型エネルギーシステム		/ 	7,	00 0 (0000)	_
(1)	分散型エネルギーシステムの国内外の諸動向	大阪府立大学		弘一	23-3 (2002)	7
(2)	家庭用1kWガスエンジンコージェネレーションシステムの		相原	義孝	23-3 (2002)	12
(3)	マイクロガスタービンー背景、現状、将来ー	京都大学		英生	23-3 (2002)	16
(4)	- 보고 두 보기 - 바바이 타고 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	三菱重工業(株)		賢一郎	00 0 (0000)	00
(4)	ガスタービン・燃料電池ハイブリッドシステムの展望	東京大学	-	伸英	23-3 (2002)	22
		芝浦工業大学	君島	真仁		

	題目	所 属	執	筆者	Vol.−No. (発行年)	頁 ——
(5)	定置用固体高分子形燃料電池の普及基盤整備事業		大村		23-3 (2002)	27
(6)	分散型電源の連系状況と電力系統への影響	関西電力(株)	寿美 藤井	裕三	23-3 (2002)	31
<i>「特</i> :	<i>集]涼を求めて</i>	"	山口	寿士		
(1)	人類が冷熱を獲得するまで	元 日本冷凍空調学会	千葉	孝男	23-4 (2002)	7
(2)	吸収式冷凍機の最新動向	(株)荏原製作所	井上	修行	23-4 (2002)	12
(3)	圧縮式冷凍機の最新動向	(株)ダイキン空調技術研究所	矢嶋	龍三郎	23-4 (2002)	17
		ダイキン工業(株)	芝本	祥孝		
(4)	自然冷媒の最新動向	東京大学	飛原	英治	23-4 (2002)	23
(5)	雪を利用した冷房	室蘭工業大学	媚山	政良	23-4 (2002)	28
(6)	沖縄における暮らしの中の知恵	琉球大学	堤	純一郎	23-4 (2002)	31
(7)	アイスクリーム―その役割,歴史と技術動向―	江崎グリコ(株)	田中	道高	23-4 (2002)	36
[特:	集]クリーン燃料の開発動向					
(1)	クリーン液体燃料の意義:種類と利用分野	(財)日本エネルギー経済研究所	小川	芳樹	23-5 (2002)	11
(2)	期待される原料:中小天然ガス田,石炭,バイオマス	東京ガス(株)	兼子	弘	23-5 (2002)	17
(3)	軽油のクリーン化	日揮(株)	永松	茂樹	23-5 (2002)	22
(4)	メタノール燃料の合成と利用	(財)地球環境産業技術研究機構	松村	安行	23-5 (2002)	26
(5)	GTL-FT合成の世界における最新動向	(財) 石油産業活性化センター	幾島	賢治	23-5 (2002)	30
(6)	DMEの開発と将来の展望	NKK	大野	陽太郎	23-5 (2002)	35
(7)	燃料電池用水素の製造技術	大阪ガス(株)	岡田	治	23-5 (2002)	39
(8)	水素エネルギーシステムの実証:国内外の動向	水素エネルギー協会	岡野	一清	23-5 (2002)	43
[特:	集]実用化に向けた原子力新技術の開発					
(1)	これからの原子力開発	国際協力事業団	森本	英雄	23-6 (2002)	11
(2)	低減速スペクトルBWRの技術開発	(株)東芝	師岡	慎一	23-6 (2002)	15
(3)	一体型モジュラー軽水炉の技術開発	三菱重工業(株)	牧原	義明	23-6 (2002)	19
(4)		財) 若狭湾エネルギー研究センター	島村		23-6 (2002)	23
(5)	小型高速炉の技術開発	(財)電力中央研究所	魚谷	正樹	23-6 (2002)	27
(6)	高温ガス炉システムの研究開発の現状	日本原子力研究所			23-6 (2002)	32
		"	塩沢			
		<i>"</i>	数土	幸夫		
(7)	フッ化物揮発法と溶媒抽出法のハイブリッド再処理 一軽水炉燃料用先進再処理システム, FLUOREX法		河村	文雄	23-6 (2002)	37
[特:	集]世界の水資源を考える					
(1)	世界水ヴィジオンが提起する世界の水資源問題	京都大学	松井	三郎	24-1 (2003)	18
(2)	地球温暖化と水資源	京都大学	池淵	周一	24-1 (2003)	22
(3)	物質循環と水資源-水系を中心として	文部科学省	和田	英太郎	24-1 (2003)	27
		"		一郎		
	dum 1 1 mm 14 1 1 1 14 mm	, , , , , , ,		不二夫		
(4)	都市水環境と水資源	九州大学	楠田		24-1 (2003)	34
(5)	河川の環境修復―生態工学の役割	国土交通省	島谷		24-1 (2003)	39
(6)	総合的水管理/流域管理と日本の国際貢献	東京大学	虫明	功臣	24–1 (2003)	43
	集]二酸化炭素吸収と植林		10.00	=*	04.0 (0000)	•
(1)	二酸化炭素排出・吸収と温暖化見通し	京都大学			24-2 (2003)	9
(2)	森林における二酸化炭素吸収の測定	大阪府立大学			24-2 (2003)	14
(3)	森林の二酸化炭素吸収と森林火災影響のモデリン				24-2 (2003)	19
(4)	海外植林とそのバイオマスとしての評価について	王子製紙(株)	神田	憲二	24-2 (2003)	24
(5)	都市環境における緑化の意義 バイオフスからのエネルギー佐奈特等	京都大学			24-2 (2003)	29
(6)	バイオマスからのエネルギー生産技術	大阪ガス(株)	山下	信彦	24–2 (2003)	34

	題目		所	属	執筆	者	Vol.−No. (発行年)	頁 <u>——</u>
(7)	バイオマスエネルギー施策と社会構築	:	大阪府立	大学	宮武	和孝	24-2 (2003)	38
[特]	集]地域のエネルギーとリサイクル							
(1)	未来開拓学術研究プロジェクト							
	「環境負荷低減を目的とした新しい自律分散型者	都市エネルギーシステム	」の概要					
			大阪:		辻 毅		24-3 (2003)	12
			京都		笠原三			
(2)	住宅におけるエネルギー消費の実態		大阪	大学	佐伯	修	24-3 (2003)	14
				"	辻 毅			
(3)	分散電源と電気エネルギー流通システム		大阪:		伊瀬		24-3 (2003)	19
			北海道		長谷川		()	
(4)	都市エネルギーシステムの最適化		大阪		辻 毅		24-3 (2003)	23
/- >	+TITE ET 1.1		大阪府立			弘一	()	
(5)	超臨界水によるバイオマスの分散処理システム		京都		坂	志朗	24-3 (2003)	29
(0)	もつかみしらしウモロリフト リーの ナ 田			"	江原	克信	0.4.0 (0.000)	•
(6)	自己粉砕ねじと家電リサイクルへの応用		京都			慶一	24-3 (2003)	34
(7)	1111 7年 (第31年 127年 - 朝京春集加州)	ᇬᄪᅝᅀᅔᄯᅜᅷᆋᄜᇬ		"	山末	英嗣		
(7)	リサイクル導入による一般廃棄物処理システムの	刀 塓項貝何仏减効果のま			#- F-	· ^¬ ⊥	0.4.0 (0.000)	
			京都		笠原三		24-3 (2003)	39
				"	東野	達		
r stete	第7十枚ルナス45块沿廊ル45年(9十年年			"	岩渕	善美		
	<i>集]本格化する地球温暖化対策一①技術編</i>		÷ #7 -	- ~	工柜	折山	04.4 (0000)	10
(1)	地球温暖化対策の技術開発動向 産業分野の地球温暖化対策技術-熱と物質循環	<u>":</u>	京都		手塚 堤	哲央	24-4 (2003)	10
(2) (3)	医生分野の地球温暖化対策技術-ヒートカスケ-		東京: 		冱	敦司	24–4 (2003)	15
(3)	氏土力 野の地球温暖化対象技術 こードカベブ		ーノベノユ 東京農工:		秋澤	淳	24-4 (2003)	21
(4)	燃料電池車の開発状況		ネホ展工。 タ自動車		中村	徳彦	24-4 (2003)	26
(5)	新エネルギーによる地球温暖化対策-事業化が		ァロシェ 電源開発		三保谷		24-4 (2003)	30
(6)	京都議定書における吸収源対策:マラケシュ合意	· —	电机机力力	(1/1/)	_ M L	اد	24 4 (2000)	00
(0)	水的域に自1-051/100次次//////水、マクノンエロボ		立環境研究	空所	山形与	志樹	24-4 (2003)	35
(7)	二酸化炭素の分離, 回収, 貯蔵技術の現状と将		- 14 Ot 1912	70771	H1/2 3	נעןיטו	24 4 (2000)	00
(//		(財)地球環境産業	技術研究権	機構	松宮	紀文	24-4 (2003)	39
<i>「特</i> :	集]本格化する地球温暖化対策一②制度編	(MI) - B-11-M-30/II-MC	2113 31701	,		1021	2 (2000)	
(1)	京都メカニズムの意義と活用法		東京	大学	松橋	隆治	24-5 (2003)	14
(2)	共同実施等による地球環境問題への貢献-NED	0 の取組みと今後の方[句-	· -	,		, ,	
		新エネルギー・産業技術	· 総合開発	機構	久留島	守広	24-5 (2003)	20
(3)	ブラジル鉄鋼会社とのCDM プロジェクト実現ので	1号	豊田通商	(株)	佐々木訓	之介	24-5 (2003)	23
(4)	排出量取引の動向	(株)三	菱総合研究	究所	中村	秀臣	24-5 (2003)	27
(5)	地球温暖化対策税制の動向	(独)国:	立環境研究	究所	日引	聡	24-5 (2003)	33
(6)	環境自主行動計画と関連法制度	(社)日本経	斉団体連1	合会	高橋	秀夫	24-5 (2003)	38
			日本電気	(株)	吉田	孝志		
(7)	欧州における地球温暖化対策に関わる制度の重	前向と今後の展望						
		(財)日本エネルギ	一経済研究	究所	工藤	拓毅	24-5 (2003)	42
[特]	集]水素エネルギー社会							
(1)	国内外の水素エネルギー施策	(財)エンジニアリ	ング振興†	劦会	小関	和雄	24-6 (2003)	13
(2)	水素製造技術の開発動向	新エネルギー・産業技術	総合開発	機構	西村	靖雄	24-6 (2003)	17
(3)	水素貯蔵技術の動向	(独)産業技	術総合研究	究所	栗山	信宏	24-6 (2003)	23
(4)	燃料電池自動車の実証試験	(財)日本	自動車研究	究所	丹下	昭二	24-6 (2003)	28
(5)	定置用燃料電池の市場導入に向けた取り組み	(社)	日本ガス†	劦会	菊沢	央忠	24-6 (2003)	34
(6)	水素の爆燃と火炎実験	(財)エネルギー総	合工学研究	究所	佐藤	保和	24-6 (2003)	39

	題目			所	属	執筆	筆者	Vol.−No. <u>(発行年)</u>	頁
(7)	燃料電池の実用化に向けたソフ		燃料電池実	用化推進協	協議会	赤松	英昭	24-6 (2003)	44
	集]競争市場におけるエネルギー								
(1)	世界のエネルギー需給の動向と	:日本のエネルギー市		/=				/	
(2)	11. 		(財)日本エネル・	キー経済は	門究所	小川	芳樹	25–1 (2004)	23
(2)	北東アジアにおけるエネルギー								
	一天然ガスパイプラインを活用し	たエネルキーアライ		一举纵人口	T 1707 = 1°	₩ <i>Ŧ</i>	1 0.071	05 1 (0004)	00
(0)		Ŀ-	(株)	三菱総合研		平石	和昭	25-1 (2004)	29
(3)	エネルギー市場リスクと金融技術		(84)	慶應義塾		前田	章	25-1 (2004)	34
(4)	電力自由化とエネルギー・セキュ			電力中央研		_ 矢島 -	正之	25-1 (2004)	40
(5)	信頼性・環境性・経済性のバラン	/人を日指して―ソー	一にぶけるエイル				市 24	0F 1 (0004)	40
(0)	エハヤーシュフラナル外シュー	/ / / / -		ソニー		桑原	康浩	25-1 (2004)	46
(6)	IT分野における電力供給システ. <i>集7地方自治体のエネルギービジ</i>		ヌ・ティ・ティ・	建架総合切	光灯	杉浦	利之	25–1 (2004)	51
(1)	地域新エネルギービジョン策定等		ユルギ 	ᄷᄓᄼ	e +4k +#	шф	1#	05 0 (0004)	10
(0)	芝林坦・ネルギー ポニン・ニーのしょ		ネルギー・産業技芸			田中	博	25-2 (2004)	10
(2)	茨城県エネルギープランについて			県企画部企 場の環境で		浦崎	宏幸	25-2 (2004)	15
(3)	三鷹市地域新エネルギー・省エ					岩崎	好高	25-2 (2004)	19
(4)	岐阜県におけるエネルギー安定			岐阜県商 東郊環接着		中原	吉博	25-2 (2004)	23
(5)	宮津市地域省エネルギービジョ: 兵庫県グリーンエネルギー推進			民部環境衛 郊≔+≉早→		中山	康成	25-2 (2004)	27
(6)			-			遠田	竹雪	25-2 (2004)	31
(7)	福岡市地域新エネルギービジョ		福岡市環境局			平居	秀児	25-2 (2004)	35
(8)	沖縄県新エネルギービジョンにつ 集 <i>]産業と暮らしを支える熱交換紙</i>			縄県商工党	割削	仲村	卓之	25–2 (2004)	39
	<i>乗∫産業と春らしを又える終文授品</i> 熱交換器を特集するにあたって	·汉例一克认·别宠·	· 床至一	ᆂ	- 十 🛎	±m	±17 +	0E 2 (2004)	c
(1)		- ⁴° / \ . L			下大学 『大学	吉田	邦夫 英生	25-3 (2004)	6
(2)	熱交換器についての断片的キー エ提供域の熱サ东	-ハイント	てひ	^{牙句} 田化工建設				25-3 (2004)	10
(3)	工場地域の熱共有 水冷式熱交換器の腐食と汚れ <i>の</i>	NE ιΕ				松田	一夫降	25-3 (2004)	10
(4)		기가IL		鈴木技術事 非破壊検査		鈴木 横野		25-3 (2004) 25-3 (2004)	16
(5) (6)	熱交換器の非破壊検査技術 電子機器冷却		•	非吸场快宜 12.果山		石塚		25-3 (2004) 25-3 (2004)	
(7)	电丁版品/四回 天然ガスパイプラインの熱交換	1 2	:	ーロース 新日本製鎖		大場	勝 昭雄	25-3 (2004) 25-3 (2004)	
(8)	大			机口本表射 木村化工機		中西	俊成	25-3 (2004)	
	朝しい然面投削一内の熱文換3 <i>集]屋上緑化で街を涼しく</i>	- 公田 - 「	•	个们16工 6	戈(11本)	中四	後风	25-3 (2004)	34
(1)	<i>乗」産工献化で国を添し、</i> 住宅・建築分野における屋上緑・	ルに依る国の取り組	ユニついて	国土交	▼温少	大島	敦仁	25-4 (2004)	10
(2)	大阪市の屋上緑化に関する取り		071C 20.C	大阪市信		_	三男	25-4 (2004)	
(2)	八阪川の産工隊 旧に関する取り	小口のと		八败山口	儿	高村	ーカ 聡	23 4 (2004)	12
(3)	屋上緑化 その分析と評価			東京都立		石野	久彌	25-4 (2004)	16
(4)	産工隊に での方がご計画 複合緑化都市「なんばパークス」	の民上公園の熱的	勃里	(株)ブ		市川		25-4 (2004)	
(4)	後日 休日 11 11 11 11 11 11 11 11 1	100座工 五国の点的。	wi未	(1117)	// //		日孝幸	25 4 (2004)	20
(5)	アクロス福岡―都市に立体的な緑	州太剑山」執環培 た	小 美	(株)竹中コ		三輪	隆	25-4 (2004)	24
(6)	都市の自然回帰をめざして	心で同田し然境境で	以 占 一	鹿島建設		一₩ 長沼	寛	25-4 (2004)	
(7)	共生微生物を活用した屋上緑化	シュテル		関西電力			克 野眞司	25-4 (2004)	
(1)	宍王版王初を冶用した産工隊に			大阪ガス		松下	功	23 4 (2004)	32
(8)	屋上緑化の将来展望;解析・評(ホツール、政等判断	ソールの敕借を	皮膜カク 慶應義望			周三	25-4 (2004)	36
	産工酸化の付木版量			泛 版 我	゠ハナ	11.1 T	川二	20 4 (2004)	30
(1)	乗」家竜<i>機器のトップラン)一技術</i> 家電機器のトップランナー技術 <i>の</i>		一)ア州<i>夫郎</i> (財)省エネ	ルギー お、	, to	佐藤	文廣	25-5 (2004)	15
(2)	家電機器の下ップラブナー技術の 主要個別機器の効率改善状況	ノ <i>も</i> む1 八	(別/目上个)	,v'E -	, , –	江際	人庚	20 0 (2004)	10
(2)	土安恒が協品の効率以普次流1)超省エネノンフロン冷蔵庫		1 //	下電器産業	<u>ا</u> لبطا	デ ェ	治之	25-5 (2004)	20
	1/20日エイソノノリノ 7		松	□电价性オ	₹(作不) //	石工 広瀬	謙司	20 0 (2004)	20
	2)エアコン		/+H	ま) 東芝キヤ				25-5 (2004)	01
	2/エノコン		(17	ハ米ベナイ		开工	币液	20-0 (2004)	24

	題目	所	属	執筆	筆者	Vol.−No. (発行年)	頁 <u>——</u>
	3) 蛍光灯器具	日立ライティング	`(株)	渡辺	寿秋	25-5 (2004)	28
	4)液晶テレビーバックライト低消費電力化への取り組みー	シャープ		井上	裕	25-5 (2004)	31
(3)	家電機器のエネルギー使用実態		(1214)	<i>7</i> 1 <u></u>	111	20 0 (2001)	01
(0)	1)実測調査に基づく家庭用エアコン,冷蔵庫,待機電力の実態	能 新選	大学	赤林	伸一	25-5 (2004)	35
	「大人の明白に全つ、外陸川エナコン、川城岸、川城电力の大)	県立新潟女子短期		坂口	淳	20 0 (2004)	00
			大学	石山	洋平		
	2)住宅のエネルギー消費と種々の要因との関係	東京理科		井上	降	25-5 (2004)	40
Γ <i>1</i> .±	2) はそのエイルマー 内負と性べの安凶との関係 集]電力貯蔵技術の最新動向	木 尔廷行	八十	71 —	胜	25 5 (2004)	40
(1)	<i>乗」電力対象技術の役割と</i> 展望	佐 : 山	大学	内山	洋司	25-6 (2004)	12
(2)	電力会社における電力貯蔵への取り組み	JN 1/X	八十	МКА	/ + +)	25 0 (2004)	12
(2)	电力去社における电力対域への取り組み 1)NAS電池による電力貯蔵システム適用例	東京電力	(14)	田中	晃司	25-6 (2004)	16
	2)レドックスフロー電池の多機能化と適用例	関西電力		大野		25-6 (2004) 25-6 (2004)	
	2) レトックスプロー電池の多機能化と週刊例 3) 風力発電電力系統安定化等技術開発について				和彦 康一	25-6 (2004) 25-6 (2004)	20
		電源開発		小林			24
(0)	4) SMESおよびフライホイールの開発と応用展開	中部電力	(休)	長屋	重夫	25-6 (2004)	28
(3)	蓄電装置の高性能化とその応用展望	4 11	. 4	φ.ι.	47 14	05 0 (0004)	0.4
	1)電力貯蔵用鉛蓄電池 (株)ジーエス・ユアサマ:			畠山	好也	25-6 (2004)	34
	2)リチウムイオン電池	新神戸電機		野村	洋一	25-6 (2004)	38
r 4+	3)大容量電気二重層キャパシタと蓄電システム	(株)岡村研	"	岡村	廸夫	25-6 (2004)	42
	<i>集]農業とエネルギー・資源</i>	丰二曲 **	224		×+ —	00 1 (0005)	0.1
(1)	農業とエネルギー・資源を特集するにあたって	東京農業			浩二	26-1 (2005)	21
(2)	農業とゼロエミッション	放送大学・国連		鈴木	基之	26-1 (2005)	22
(3)	農業へのエネルギー投入		大学		F. ポ−イズ	26-1 (2005)	27
(4)	梅産業におけるゼロエミッション化	(株)東		平	知明	26-1 (2005)	33
(5)	太陽光による農業廃液処理	神奈川県農業総合研		深山	陽子	26-1 (2005)	37
			大学	橋本	和仁		
(6)	ゼロエミッション型農業生産システム	(株)荏原製		大塚	秀光	26-1 (2005)	41
(7)	農業ロボット―21世紀のわが国の農と食を支えるのは―	東京農業		玉木		26-1 (2005)	46
	集] 資源循環・エネルギーミニマム型システム技術(1)―科学技		プロジ	ェクト研	究から	_	
(1)	研究領域:「資源循環・エネルギーミニマム型システム技術」最	· · · · · · · · · · · · · · · · · · ·					
			大学	平田	賢	26-2 (2005)	16
(2)	高リサイクル性を有する森林資源の開発	九州	大学	小名	俊博	26-2 (2005)	18
(3)	植物系分子素材の高度循環活用システムの構築	三重	大学	舩岡	正光	26-2 (2005)	22
(4)		(独)農業生物資源研	究所	馬越	淳	26-2 (2005)	26
(5)	水を電子源とする人工光合成システムの構築						
	―水分子の活性化過程の解明と二酸化炭素還元との共役―	東京都立	大学	井上	晴夫	26-2 (2005)	29
(6)	機能環境流体を利用した資源循環・低エミッション型物質製造	プロセスの創製					
		(独)産業技術総合研	究所	生島	豊	26-2 (2005)	33
			"	川波	肇		
(7)	コプロダクションによるCO₂フリーなエネルギー・物質生産シス	テムの構築 東京	大学	堤	敦司	26-2 (2005)	37
[特:	集]バイオマスエネルギー						
(1)	わが国における木質バイオマスの現状と課題	東京	大学	横山	伸也	26-3 (2005)	14
(2)	バイオマスの新規転換技術	京都	大学	前	一廣	26-3 (2005)	18
			"	長谷月	川功		
(3)	バイオマスの水蒸気改質	北海道	大学	細貝	聡	26-3 (2005)	23
			"	林	閏一郎		
(4)	木質系バイオマスによる小規模分散型高効率ガス化発電シス	テムの開発					
		川崎重工業	(株)	渡辺	達也	26-3 (2005)	28
			"	山田	健一		
(5)	豊富な森林バイオ資源を活用するための暫定戦略	島根	大学	小池》	告一郎	26-3 (2005)	33

	A			_ "-		
(6)	バイオマス利用による「持続型社会」の形成 #1.2675年7月 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	東京農工大学 ************************************		正靱	26-3 (2005)	38
	集 <i>] 資源循環・エネルギーミニマム型システム技術(2) ー科与</i>					40
(1)	超小型ガスタービン・高度分散エネルギーシステム	芝浦工業大学		建二郎	26-4 (2005)	10
		University of Pittsburgh I Institute of Technology		ei Wen		
(0)	_		_	ae Won ∃ ¥ //	00 4 (0005)	15
(2)	リチウムイオン電池における界面イオン移動 電気化学エネルギー変換の擬似三次元界面設計	京都大学		見善八 建一郎	26-4 (2005)	15
(3)	電気化子エイルヤー変換の擬似二次元介面設計 家庭用燃料電池実現のための新たな高効率天然ガス改質	横浜国立大学	△□1	连一山)	26-4 (2005)	20
(4)		[システムの構業 ;大学(独)科学技術振興機構	高村	仁	26-4 (2005)	24
(5)	ニュージャル 高温運転メタノール直接型燃料電池の開発	,入子(强)科子技训派英族博 山梨大学	内田	裕之	26-4 (2005)	28
(3)	同温度報ググノール直接至然料电池の開光	四来八子	渡辺	政廣	20-4 (2003)	20
(6)	新規化学結合を用いるシリコン太陽電池	" 大阪大学	少林	以 光	26-4 (2005)	32
(7)	が成化子和ロを用いるグリコン 本陽電池 資源回収型の都市廃水・廃棄物処理システム技術の開発		津野	洋	26-4 (2005)	36
(8)	温暖化ガスにかかわる永久凍土攪乱の制御技術	北海道大学	福田	正己	26-4 (2005)	40
(9)	無機 地線化による炭素固定システムの構築	北 <i>海</i> 道八子 成蹊大学	油田	興一	26-4 (2005)	45
(10)	社会的受容性獲得のための情報伝達技術の開発	国際連合大学	安井	_典 一	26-4 (2005) 26-4 (2005)	49
(10)	在去的文台注度特切/28/07/同報伝连技術の開光	(独)科学技術振興機構		土 美永子	20-4 (2005)	49
Γ <i>1</i> .±÷	集]新しい電力供給ネットワークシステム	(红)17于汉则派央城博	/尔 =	天小丁		
(1)	<i>素」新しい・亀の疾病・キット</i> フークシステムの動向	東京大学	横山	明彦	26-5 (2005)	7
(2)	分散電源の系統連系に係る実証研究	未示八子	伊山	197 JS	20 3 (2003)	,
(2)	1)NEDOにおける新エネルギー系統連系技術開発への取り	組み				
		ハロット ニー・産業技術総合開発機構	田山和	 	26-5 (2005)	11
	2)集中連系型太陽光発電システム実証研究	(株)関電工		一彦	26-5 (2005)	14
	3)八戸市 水の流れを電気で返すプロジェクト	三菱電機(株)	合田	忠弘	26-5 (2005)	18
	のが、「「「「小の)がにすりと 电気 () とう プロフェブ	二叉电风(小)	河野	良之	20 0 (2000)	10
		 //	小島	康弘		
		,,	吉田	康夫		
		 //	都留	深ス潔		
	4)愛・地球博における新エネルギー等地域集中実証研究		пь ш	7715		
	(新エネルギー, マイクログリッド, 燃料電池, 太陽光発電,	NaS雷池 バイオマス)				
	(4)1—1701 , (1707)771 , MINTEREST , MISSISSEE,	中部電力(株)	田中	雅	26-5 (2005)	22
	5) 新エネルギー等地域集中実証研究京都エコエネルギー			•	,	
		ルギープロジェクト研究会	鈴木	智宏	26-5 (2005)	25
	6)電力ネットワーク技術実証研究	(財)電力中央研究所	田中	和幸	26-5 (2005)	28
		"	小林	広武		
	7) 品質別電力供給システム実証研究	(株)NTTファシリティーズ	武田	隆	26-5 (2005)	32
	, hapana <u>-</u> 200 k (has a constant of the cons	"	廣瀬		, ,	
(3)	柔軟で高信頼性の電気エネルギー流通システムFRIENDS	横浜国立大学	原	亮一	26-5 (2005)	36
		函館工業高等専門学校	長谷月	淳		
(4)	海外の技術動向	(株)三菱総合研究所	諸住	哲	26-5 (2005)	40
[特]	集]CO₂回収•貯留技術の最新動向					
(1)	CO2回収・隔離技術ーR&Dから政策課題化へ	(独)産業技術総合研究所	赤井	誠	26-6 (2005)	6
(2)	CO₂分離回収技術の動向					
	1)化学吸収法	関西電力(株)	小山	博之	26-6 (2005)	10
	2)膜分離法 (財)	地球環境産業技術研究機構	風間	伸吾	26-6 (2005)	14
	(財)地球環境産	業技術研究機構,成蹊大学	山田	興一		
	3)その他分離回収技術ー酸素燃焼技術開発の現状ー (具)	材) 石炭エネルギーセンター	氣駕	尚志	26-6 (2005)	18
		石川島播磨重工業(株)	山田	敏彦		

	題目	所 属	執筆	筆者	Vol.−No. (発行年)	頁
(3)	CO₂貯留技術の動向					
(0)	1)地中(帯水層)貯留技術	東京工業大学	末包	哲也	26-6 (2005)	22
	2)CO ₂ 炭層固定技術	東京大学	島田	在平	26-6 (2005)	26
	3)地中貯留技術の利用(EOR)	三菱重工業(株)	飯島	正樹	26-6 (2005)	30
	4) 二酸化炭素の海洋隔離技術	(財)電力中央研究所	_	多加志	26-6 (2005)	34
「特 .	集 <i>] 交通システムと省エネルギー</i>	(37) (27)	, (11)	,,,,,,,,	20 0 (2000)	٠.
(1)	はじめに	慶應義塾大学	石谷	久	27-1 (2006)	21
(2)	運輸部門におけるエネルギー政策	経済産業省		建太郎	27-1 (2006)	22
(3)	自動車	12017281			_, , (,,	
(-,	1)ディーゼル自動車	北海道大学	小川	英之	27-1 (2006)	26
	2)ハイブリッド自動車の性能向上について	トヨタ自動車(株)	阿部	眞一	27-1 (2006)	30
	3)渋滞半減へのシナリオ	東京大学	桑原	雅夫	27-1 (2006)	34
(4)	自転車を有効活用したまちづくりと都市交通	(財)シマノ・サイクル開発センター	中村	博司	27-1 (2006)	38
(5)	鉄道における省エネルギー技術	(財)鉄道総合技術研究所	寺内	伸雄	27-1 (2006)	43
(6)	航空業界が挑戦する省エネルギー	(株)日本航空	大佐市		27-1 (2006)	47
(7)	船とエネルギー	三菱重工業(株)	湯浅	和昭	27-1 (2006)	52
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
(1)	気候変化研究について	東京大学	住	明正	27-2 (2006)	12
(2)	日本、世界の気候変動の現状と予測					
	1)気象観測の現状	気象庁気象研究所	高山	陽三	27-2 (2006)	16
	2)モデルによる将来の気候変化予測	気象庁気象研究所	鬼頭	昭雄	27-2 (2006)	19
(3)	気候変化要因の分析:現状と課題					
	1)雲・エアロゾルと気候の関係	東京大学	中島	映至	27-2 (2006)	24
	2)有効な環境政策のための気候モデルとは	横浜国立大学	伊藤	公紀	27-2 (2006)	30
(4)	IPCCの位置づけ―その役割と意義	(独)海洋研究開発機構	近藤	洋輝	27-2 (2006)	35
[特:	集]グローバル化時代における中国のエネルギー問:	a				
(1)	中国が直面しているエネルギー問題と持続可能なコ	Cネルギー戦略				
		中国国家発展改革委員会	戴	彦徳	27-3 (2006)	11
	翻訳者	立命館大学	周	瑋生		
	II .	(財)日本エネルギー経済研究所	沈	中元		
(2)	エネルギー動向と国際戦略	(財)日本エネルギー経済研究所	兼清	賢介	27-3 (2006)	16
(3)	石油需要増大とアジアのエネルギー安全保障	東洋大学	小川	芳樹	27-3 (2006)	21
(4)	原子力発電の現状と未来	上海Tepia総合研究所	邢	輝	27-3 (2006)	26
	翻訳者	立命館大学	邱	瑞艶		
	II .	"	保田	祐子		
	II .	"	周	瑋生		
(5)	住宅におけるエネルギー問題	埼玉大学	外岡	豊	27-3 (2006)	31
(6)	業務用エネルギー管理推進に向けた展望	日本貿易振興機構	古谷	寿之	27-3 (2006)	36
(7)	省エネ政策とポテンシャル	立命館大学	周	瑋生	27-3 (2006)	39
		中国国家発展改革委員会	呂	文斌		
[特:	集]循環型社会におけるマテリアル					
(1)	物質フローのシステム的把握と循環型社会	(独)国立環境研究所	森口	祐一	27-4 (2006)	11
(2)	マテリアルフローから見た循環型社会					
	1)産業連関分析を用いた製品マテリアル組成推定。	とMFAへの応用 早稲田大学	中村恒	眞一郎	27-4 (2006)	16
	2)e-wasteの国際資源循環と資源性・有害性	(独)国立環境研究所	村上	進亮	27-4 (2006)	21
		<i>II</i>	吉田	綾		
		<i>II</i>	村上	理映		
		<i>II</i>	寺園	淳		
	3)日本発の使用済み自動車の国際循環	(独) 産業技術総合研究所	布施	正暁	27-4 (2006)	25

	題 目	所	属	執	筆者	Vol.−No. (発行年)	頁
(3)	マテリアルリースと循環型社会						
(3)	1)マテリアルリースと社会システムの構築	(独)物質・材料研	空機構	原田	幸明	27-4 (2006)	29
	2)素材の再生技術の現状とマテリアルリース技		北大学		崇	27-4 (2006)	34
	3) 鉄鋼産業のマテリアルリースが誘導する資源				ᅏ	27 4 (2000)	J-4
	の一致調性末の、アプラルアースは一切寺 デの兵脈		をはめている。		通	27-4 (2006)	38
			11	山本	祐吾	27 4 (2000)	00
「特 :	集]国際LNG市場の動向とLNG冷熱利用の現状	上取り組み					
(1)	国際LNG市場の構造変化		源機構	石井	彰	27-5 (2006)	6
(2)	わが国におけるLNG冷熱利用の現状と利用拡	大への取り組み					
		新エネルギー・産業技術総合開	発機構	山中	義一	27-5 (2006)	11
(3)	LNG直接噴霧・混合によるガス冷却装置の開発	東京電	力(株)	織戸	保成	27-5 (2006)	16
(4)	LNG冷熱利用による液化水素製造方法の開発	岩谷産	業(株)	渡辺	聡	27-5 (2006)	19
(5)	LNG-BOG処理技術	東京カ	ブス(株)	白川	裕	27-5 (2006)	22
(6)	蓄冷式BOG再液化技術とLNG冷熱のカスケート	・ 利用 大阪カ	ブ(株)	間渕	暢浩	27-5 (2006)	25
(7)	冷熱を利用した超伝導ケーブルシステムの検討	住友電気工	業(株)	廣瀬	正幸	27-5 (2006)	25
		古河電気エ	業(株)	向山	晋一		
[特	集]燃料電池自動車実現へのマイルストーン ―	JHFC(水素・燃料電池実証)フ	プロジェ:	クトの総	括と今	後の方向	
(1)	JHFCプロジェクト全体概要	(財)日本自動車	研究所	増永	邦彦	27-6 (2006)	6
			"	平野	出穂		
(2)	燃料電池車の試験結果	(財)日本自動車	研究所	井関	英治	27-6 (2006)	10
			"	平野	出穂		
(3)	JHFC水素ステーションの建設および運用結果	(財)エンジニアリング振	興協会	岡本	歩	27-6 (2006)	14
			"	久保	山孝治		
			"	戸室	仁一		
(4)	総合効率検討結果	(財)日本自動車	研究所	荻野	法一	27-6 (2006)	19
			"	丹下	昭二		
(5)	JHFC水素・燃料電池実証プロジェクト 広報活	動 (財)日本自動車	研究所	渡邊	知絵	27-6 (2006)	24
			"	平野	出穂		
(6)	海外におけるFCV実証試験動向	(財)日本自動車	研究所	丹下	昭二	27-6 (2006)	28
(7)	今後の課題及び今後の実証試験について	(財)日本自動車	研究所	平野	出穂	27-6 (2006)	32
		(財)エンジニアリング振	興協会	戸室	仁一		
	集]エネルギー資源の多面的評価 ―生成起源	<i>や非在来型を含めて</i> —					
(1)	総論:石油資源量評価問題とその疑念	芝浦工	業大学	藤田	和男	28-1 (2007)	19
(2)	石油・天然ガスの資源評価		都大学		譲	28-1 (2007)	25
(3)	再び注目を集める石油の無機起源説	前(財)日本エネルギー経済		_	敬史	28-1 (2007)	29
(4)	石炭の資源評価		都大学		孝一	28-1 (2007)	34
(5)	メタンハイドレート資源開発の現状と展望	(独)産業技術総合			英夫	28-1 (2007)	39
(6)	ウランの資源評価	(財)電力中央	研究所	鮫島	薫	28-1 (2007)	44
	集] 国家石油備蓄と新管理手法	~>±/ > /*\! > o=#/-					
(1)	我が国の備蓄事業における課題と定量的管理		. NOT 1414 1+1+	±0	34 —	()	
		(独)石油天然ガス・金属鉱物資			浩二	28-2 (2007)	10
			"	織山	純		
(0)	100地工艺业の伊克州公司伍10日晚甘油	(は) てはてはよう 人間が振ぶ	// ## ## ===	渡辺	正俊	00 0 (0007)	4.5
(2)	LPG地下基地の保安性能評価と国際基準	(独)石油天然ガス・金属鉱物資			賢一	28-2 (2007)	15
			"	織山	純		
(2)	Un b級拆毛注In b Zi DOWT 보냈죠.但內媒体	.=/∓.	"	岩原	達也		
(3)	リスク解析手法によるLPG地下基地の保安性能		· 油 ₩ +		- /	00 0 (000=)	22
		(独)石油天然ガス・金属鉱物資		1 120	政明 Pabby	28-2 (2007)	20
		Gl	EOSTOCK	J. A.	Rehby		

	題目所属	執	筆者	Vol.−No. (発行年)	頁
(4)	石油地上基地の定量的機動性評価手法				
,	千代田アドバンスト・ソリューションズ(株)	米谷	剛	28-2 (2007)	25
	$^{\prime\prime}$	久郷	信俊	(,	
(5)	苫小牧東部石油地上基地の定量的機動性評価				
	千代田アドバンスト・ソリューションズ(株)	石坂	武司	28-2 (2007)	30
	(独)石油天然ガス・金属鉱物資源機構	光田	司		
	苫東石油備蓄(株)	梅田	利一		
(6)	秋田石油備蓄基地(地中式)の建設操業の20年—改善の実践と将来—				
	(独)石油天然ガス・金属鉱物資源機構	根岸	洋	28-2 (2007)	34
	(株)秋備	諸武	照幸		
(7)	世界の備蓄事業の変遷と将来の技術動向 GEOSTOCK	Roland S	chirtzinger	28-2 (2007)	39
	ıı .	Jean-M	ichel Noe		
[特:	集]都市の地震防災対策				
(1)	地震調査研究の最近の成果―全国を概観した地震動予測地図―				
	(独) 防災科学技術研究所	藤原	広行	28-4 (2007)	7
(2)	東京都の地域防災計画東京都総務局	渡邊	俊夫	28-4 (2007)	12
(3)	水道事業の震災対策 東京都水道局	杉山	芳彦	28-4 (2007)	17
(4)	電気事業の地震防災対策(東京電力(株)の事例) 東京電力(株)	大橋	裕寿	28-4 (2007)	22
	$^{\prime\prime}$	末広	俊夫		
(5)	都市ガス事業の地震防災対策 東京ガス(株)	菜花	健一	28-4 (2007)	27
	$^{\prime\prime}$	萬來	雄一		
(6)	鉄道事業の地震防災対策~JR東日本の取り組み~ 東日本旅客鉄道(株)	牛島	雅隆	28-4 (2007)	32
	ıı ı	南雲	敦		
(7)	電気通信事業の地震防災対策 東日本電信電話(株)	山谷	哲美	28-4 (2007)	37
[特:	集]原子カルネサンス				
(1)	我が国の原子力進まんとする道 (社)日本原子力産業協会、東京電力(株)	宅間	正夫	28-5 (2007)	15
(2)	原子力をめぐる国際情勢:平和利用と核不拡散の両立を目指して				
	(財)電力中央研究所,東京大学		達治郎	28-5 (2007)	18
(3)	原子力理解についての最新状況・女性の視点から日本原子力発電(株)	小川		28-5 (2007)	
(4)	原子力ルネサンス ―欧米の動向 (財)エネルギー総合工学研究所	松井	一秋	28-5 (2007)	27
	ıı .	鳥飼	誠之		
(5)	躍動するアジアの原子力開発 (社)日本原子力産業協会	小林	雅治	28-5 (2007)	
(6)	国際原子力エネルギー・パートナーシップの動向 (財)電力中央研究所	長野	浩司	28-5 (2007)	37
	集]建築における省エネルギーの現状と展望				
(1)	住宅・建築物における省エネルギー・地球温暖化対策の現状と今後の方向性				
(-)	国土交通省		秀明	28-6 (2007)	
(2)	建築における省エネルギーと温暖化対策 慶應義塾大学		賀俊治	28-6 (2007)	
(3)	建築設備のコミッショニング(性能検証) 京都大学	吉田		28-6 (2007)	19
(4)	オフィスビルにおける省エネルギー計画 (株)日建設計	堀川	晋	28-6 (2007)	
(5)	産業用空調における省エネルギー 清水建設(株)	戸田	芳信	28-6 (2007)	
(6)	住宅における省エネルギー 近畿大学	岩前	篤	28-6 (2007)	34
	<i>集]マイクログリッド・分散型エネルギーネットワーク</i>	. I. m.	34LL-		
(1)	マイクログリッド研究の動向東京大学	浅野	浩志	29-1 (2008)	15
(2)	民間企業と大学・公的研究機関とによる実証試験への取り組み	/ + '	<i>þ</i> . L	00 4 (0000)	
	1)ホロニック・エネルギーシステムに向けてのマイクログリッド実証試験 (株)東京ガス	徳本	勉	29-1 (2008)	19
		塚田	龍也		
		田上	誠二	00 4 (0000)	۵-
	2)住宅を対象とした分散型エネルギーネットワーク (独)産業技術総合研究所	安芸	裕久	29-1 (2008)	
	3)集合住宅における分散型エネルギーネットワークの実証実験 大阪ガス(株)	田村	至	29-1 (2008)	30

	題目所原	執	筆者 ———	Vol.−No. (発行年)	頁
	4)パワーエレクトロニクス技術を駆使した高品質電力供給システム 大阪大	学 伊瀬	敏史	29-1 (2008)	35
	5)複数種類分散型電源によるマイクログリッドの自立運転制御の開発 清水建設(株)沼田	茂生	29-1 (2008)	40
		, 下田	英介		
	東京大:	学 馬場	旬平		
(3)	海外におけるマイクログリッド関連プログラムの動向				
	1)米国におけるマイクログリッド研究活動 ローレンスバークレー国立研究	斤 クリス	スマルネ	29-1 (2008)	45
		/ 周	南		
	2) 欧州における分散型エネルギーネットワークプログラム (独) 産業技術総合研究	斤 近藤	潤次	29-1 (2008)	49
		/ 安芸	裕久		
	東京大:	党 浅野	浩志		
[特:	集]時空を超えて熱を操る技術				
(1)	新たな熱活用に向けた技術動向と展望 名古屋大	学 小林	敬幸	29-2 (2008)	8
(2)	熱を蓄える―低温蓄熱材料の開発動向― (株)三菱化学科学技術研究センター	- 垣内	博行	29-2 (2008)	13
		/ 日高	秀人		
(3)	熱を蓄える—中温蓄熱材料の開発動向— 東京工業大	学 加藤	之貴	29-2 (2008)	17
		/ 劉	醇一		
(4)	熱を運ぶ―熱輸送による低温排熱利用の可能性― (株)栗本鐡工	斤 四方	一郎	29-2 (2008)	22
	三機工業(株) 岩井	良博		
(5)	熱の質を高める―吸着現象を利用した排熱の質的転換― ユニオン産業(株) 米澤	泰夫	29-2 (2008)	27
(6)	熱の質を高める―化学反応を利用した排熱の質的転換― (株)ファンクショナル・フルイッ	藤岡	恵子	29-2 (2008)	31
	大阪ガス(構) 久角	喜徳		
		′ 竹森	利和		
		/ 岸本	章		
	住友精密工業(構) 我孫	子哲夫		
(7)	熱の質を高める—DME化学再生発電システムの開発— 関西電力(株)佐藤	純一	29-2 (2008)	36
		/ 笹部	和宏		
		/ 渡邊	恒典		
	(株)東				
		, 大橋			
Γ#±	集]新世代太陽電池の動向	/ 中垣	隆雄		
(1)	<i>乗] 新世代太陽電池の期刊</i> 新世代太陽電池への期待 東京大:	学 藤井	康正	29-3 (2008)	10
(2)	新臣代太陽電池・の知行 ギボハー 薄膜シリコン太陽電池 シャープ(株		-	29-3 (2008)	10 12
(2)		, 蔣岡		29-3 (2008)	12
(3)	球状シリコン太陽電池	, 厥则	判		
(3)	(株)クリーンベンチャー2	1 室園	幹男	29-3 (2008)	17
(4)	CIS系薄膜太陽電池の動向 昭和シェル石油(株			29-3 (2008)	22
(5)	集光型の高効率太陽電池 豊田工業大!		真史	29-3 (2008)	28
(6)	会素 単感 太陽電池の現状と展望 東京大!			29-3 (2008)	33
(0)		r /娘/!! / 内田	心心聡	29 3 (2000)	33
		, , 久保			
(7)	有機薄膜太陽電池 大阪大!			29-3 (2008)	38
	有饭净族本物电池 人做人· <i>集]高性能二次電池電気自動車</i>	1411	坦雌	20 0 (2000)	00
(1)	<i>乗」同に能一の电池电XI日割甲</i> 電気自動車,プラグインハイブリッド自動車の普及に向けた政府の取り組み				
(1)	电X日期中、フラクインバインサット日期中の自及に同じた政府の取り組み 経済産業・	当 野田	智輝	29-4 (2008)	5
(2)	展別を表現る。 脱温暖化に向けた電気自動車の性能と可能性 早稲田大!			29 ⁻⁴ (2008) 29 ⁻⁴ (2008)	10
(3)	祝温暖化に同じた电気自動車の性能と可能性			29-4 (2008) 29-4 (2008)	14
(3)		<i>,</i>		23 4 (2006)	14
(4)	急速充電可能な小型電気自動車の開発 富士重工業(株		一真	29-4 (2008)	19
(4)	心処ル电引化は小生电双口剥牛の開光	/ 元升	묫	29 4 (2000)	ıθ

	題目	Ē	所 属	執筆	筆者	Vol.−No. (発行年)	頁
(5)	電気自動車のための充電インフラ	亩亡	〔電力(株)	姉川	尚史	29-4 (2008)	24
(6)	次世代自動車用リチウムイオン二次電池の開発動向	米 力		וילוויק	IFI X	23 4 (2000)	24
(0)		ギー・産業技術総合	:盟桑機構	小林	弘典	29-4 (2008)	29
(7)	米国におけるプラグインハイブリッド車の開発動向	(財)日本自動		福家	保	29-4 (2008)	34
	集]バイオマス資源・エネルギー転換技術の最前線	(M) [7]	14- MI 2017I	田水	I	25 4 (2000)	04
(1)	バイオマスエネルギー転換技術の多様性		京都大学	坂	志朗	29-5 (2008)	13
(2)	汚泥炭化燃料の発電利用について	バイオ	が船(株)	田島	彰	29-5 (2008)	18
(3)	バイオガスの現状と今後の課題		がいいかん がス(株)	久米	デール 長雄	29-5 (2008)	22
(4)	日本における輸送用バイオ燃料の開発		石油(株)		建一郎	29-5 (2008)	27
(5)	バイオ燃料の評価とサステイナビリティ	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		221 2221	,-		
(-)		的電力中央研究所,	東京大学	山本	博巳	29-5 (2008)	32
(6)	バイオマス利活用支援システムの構築		·設計(株)	井上	陽仁	29-5 (2008)	37
(0)		ت وبير عد	<i>II</i>	縄田	大輔	20 0 (2000)	0,
			東京大学	山地	憲治		
	(b	l) 電力中央研究所,	東京大学	山本	博巳		
	(Av.		筑波大学	内山	洋司		
			広島大学		幸彦		
「特	集]エネルギー転換・多消費産業の需要予測		,дш,,()	12411	+12		
(1)	・カが国の長期エネルギー需給展望―環境制約と変化する。	るエネルギー市場の	カ下での2	030年ま	での見	通1.—	
(1)		り 日本エネルギー紹		柳澤	·(U)。 明	29-6 (2008)	13
(2)	電力需要の動向と今後の見通しについて		[電力(株)	宇賀		29-6 (2008)	18
(3)	製紙産業における省エネルギーおよび地球温暖化対策		組連合会	稲田	治	29-6 (2008)	22
(4)	国内セメント産業の中長期における需給要因	太平洋セメ		市沢	和彦	29-6 (2008)	26
(5)	原料高騰と石油化学の需要		・ (体)	沖	泰宏	29-6 (2008)	30
(6)	家庭における家電機器の総消費電力量推計の方法	一夕 (社)日本電		齋藤	潔潔	29-6 (2008)	33
	集]水素製造・貯蔵・輸送の現状と展望	(11) 11 77 1	E IX — X A	MI IIX	7715	20 0 (2000)	00
(1)	水素の現状と将来	車点		桜井	誠	30-1 (2009)	26
(2)	化石燃料からの水素製造		石油(株)			30-1 (2009)	
(3)	水からの水素製造1:水電解		商事(株)	原田	宙幸	30-1 (2009)	32
(4)		ルータ (独) 日本原子力研究				30-1 (2009)	36
(5)	水素を中心とした微生物によるバイオ燃料製造技術		広島大学			30-1 (2009)	41
(0)	小宗と中心とした版工物による。 17 旅行 教廷以前		/ДШ//]	西尾	一一一一一	00 1 (2000)	
(6)	高圧水素	岩谷	·· ·瓦斯(株)	岩下	博信	30-1 (2009)	45
(7)		元日本エア・リキー		花田	卓爾		
(8)	合金および無機材料による水素の固形化		日本大学		伸幸	30-1 (2009)	54
(9)	有機ハイドライド	車点	(理科大学		泰和	30-1 (2009)	58
	集]サステイナビリティ学の創生	NO.	(- <u>+</u> 1/1/0)	7171	X 1H	00 1 (2000)	00
(1)	- IR3Sによるサステイナビリティ学の創生とグローバル・メタ	スネットワークの形を	ıt				
(1)		東京大学,		小宮ロ	山宏	30-2 (2009)	24
		XXXX 1 ,	11		和彦	00 2 (2000)	
(2)	社会経済システムの改編と技術戦略:課題と展望		京都大学	井合	進	30-2 (2009)	29
(3)	エコ産業技術の開発と社会システムの研究		大阪大学		通	30-2 (2009)	33
(4)	持続的北方生物生産システムの展望	Н	ス級ステ 公海道大学		裕	30-2 (2009)	39
(5)	アジア・太平洋地域に対する気候変動の影響と適応策	-10	茨城大学		信男	30-2 (2009)	44
(6)	サステイナブルな社会構築のための人材育成と大学の役		東京大学		俊	30-2 (2009)	48
(0)	, ハ, 1, , , ルの正本情未りにいり入れ 日以こ八十の収	C D J	米尔八子	小貫	-	00 Z (Z008)	70
			"	介·貝 鎗目	雅		
(7)	低炭素社会実現に向けた挑戦	昭和シェル		弱日 伊藤	智明	30-2 (2009)	53
(1)	四次糸江五天坑に凹げた旅戦	PロΛUンエル	/14/田(怀)	1ナ 旅	百叻	30-2 (2009)	53

	題 目	所	属	執筆	筆者	VolNo. (発行年)	頁
						()611 17	
	集]排出量の見える化, カーボンフットプリントとオフセット						
(1)	経済産業省におけるカーボンフットプリント制度構築への			中村	大紀	30-3 (2009)	7
(2)	歯磨剤でのカーボンフットプリント試行事例	ライオン		岡田	淳吾	30-3 (2009)	9
(3)	コクヨグループのカーボンフットプリント試行事例	コクヨS&T	(株)	武内	計憲	30-3 (2009)	14
(4)	「食」におけるCO₂排出量の「見える化」	東北	大学	齋藤	雅典	30-3 (2009)	17
(5)	我が国におけるカーボン・オフセットに関する制度構築の)動向					
		(社)海外環境協力セン	ター	加藤	真	30-3 (2009)	21
(6)	日本におけるカーボンオフセットプロバイダーの取組み重	動向 カーボンオフセット	協会	蜂須賀	質 祐	30-3 (2009)	25
			"	辻本	大輔		
(7)	"カーボン・オフセットブーム"の中での環境対応―イベン	小実務の現場から					
		(株)	電通 .	比留同	間雅人	30-3 (2009)	30
[特	集]需要家サイドからの低炭素社会の実現						
(1)	家庭部門および業務部門の需要構造と省エネルギー技	術 (財)電力中央研	究所	中野	幸夫	30-4 (2009)	8
(2)	照明省エネルギー技術の変遷と今後の展望	パナソニック	(株)	明星	稔	30-4 (2009)	13
(3)	低温排熱を利用した空調技術	東京農工	大学	秋澤	淳	30-4 (2009)	19
(4)	自然冷媒CO ₂ ヒートポンプ給湯器の最新技術	(株)デン	ソー	川村	進	30-4 (2009)	25
(5)	再生可能エネルギー普及における課題とコージェネレー	・ションの活用 東京ガス	(株)	進士	誉夫	30-4 (2009)	29
(6)	低炭素型ライフスタイル実現にむけた省エネ教育と省エ	ネ支援ツールの必要性					
		東京電力	(株)	木方耳	真理子	30-4 (2009)	32
[特:	集]情報化の進展と省エネルギー・低環境負荷社会への』	取り組み					
(1)	総論―情報化の進展と低炭素排出社会	東京理科	大学	森	俊介	30-5 (2009)	23
(2)	寒冷地の冷熱エネルギーを活用した地域間エネルギー			 排出	削減	, ,	
` .		電気通信	_	津田	邦和	30-5 (2009)	28
				田野	俊一	, ,	
				市野	順子		
		東京理科		森	俊介		
(3)	携帯電話キャリアの環境負荷低減への取り組み	SK3C-211		171.	~//		
(0)	「通信設備の省電力化および携帯リサイクルへの取り組	lみと課題」 KDDI	(株)	安田	豊	30-5 (2009)	34
(4)	ICTの環境負荷低減への取り組み	富士通		端谷	隆文	30-5 (2009)	40
(5)	情報化の進展による我が国の社会・経済の構造的変化		(1/1/)	-III) III	14.7	00 0 (2000)	10
(0)		(独)産業技術総合研	空所 :	松本	光崇	30-5 (2009)	46
(6)	IT革新と世界経済の構造変化	湘南エコノメトリ		室田	泰弘	30-5 (2009)	50
(7)		/IIRエコン・・ / 「アドバンストテクノロジ		西西	史郎	30-5 (2009)	55
	第7基盤産業としての石油産業の未来	17 17.271 777 47	(1/1/)		X M	00 0 (2000)	00
(1)	スリング	石油	油明 :	西川	輝彦	30-6 (2009)	6
(2)	主要産油国の動向~サウジアラビアとロシアの動向を中		连皿	23711	ሥ	30 0 (2009)	U
(2)		-心に・。 財) 日本エネルギー経済研	ᅓᅂ	小林	良和	30-6 (2009)	12
(2)			プレアリ ・	/1 ነ ላላኮ	及和	30-0 (2009)	12
(3)	石油資源の確保:素朴地政学と市場原理主義はともに近		+4k +#	- ++	± .	20. 0 (0000)	10
(4)		田天然ガス・金属鉱物資源		石井	彰	30-6 (2009)	18
(4)	石油産業における新燃料の動向	(独)産業技術総合研		後藤	新一	30-6 (2009)	24
/=\				小熊	光晴	00 0 (0000)	
(5)	次世代に向けた革新的石油精製技術開発	(財)石油産業活性化セン +45-88-%	ター	酒井	眞人	30-6 (2009)	27
(6)	グリーンリファイナリー(環境対応型製油所)を目指した打		_		٠.		
,		(財)石油産業活性化セン			一典	30-6 (2009)	31
(7)	製油所における水素製造システムと供給システム	(財)石油産業活性化セン	ター	林	宏	30-6 (2009)	35
	集]普及が始まった家庭用燃料電池			_			
(1)	燃料電池に関するこれまでの取り組み	経済産	業省 :	堀 ·	琢磨	31-1 (2010)	15
(0)	*************************************	/DT/ +c T ·· C	ᅋᅩᄪ	150 CD	=-1-	04 4 (0010)	4.0

(2) 普及期を迎えた家庭用燃料電池

(3) 家庭用燃料電池エネファームの普及に向けた課題

誠 31-1 (2010) 19

東京ガス(株) 大塚 勝臣 31-1(2010) 23

(財)新エネルギー財団 奥田

	題目	所 属	執筆	章者	Vol.−No. (発行年)	頁
(4)	燃料電池メーカにおける技術開発	(株) ENEOSセルテック	渡邉	宣彦	31-1 (2010)	26
(5)	燃料電池と太陽光発電を組み合わせたCO2オフ住宅	積水ハウス(株)	石田	建一	31-1 (2010)	31
(6)	次世代燃料電池へ向けた研究開発	山梨大学	渡辺	政廣	31-1 (2010)	35
	<i>集]大型火力発電所の革新技術</i>		<i>"</i> *****	20,52	01 1 (2010)	00
(1)	低炭素社会実現に向けての大型火力発電の展望	(株)三菱総合研究所	早稲田	田聡	31-2 (2010)	11
(2)	1700℃級ガスタービンの技術開発	三菱重工業(株)	伊藤	栄作	31-2 (2010)	14
(3)	アドバンスト高湿分ガスタービンAHATの開発	(株)日立製作所	小金流	尺知己	31-2 (2010)	19
(4)	先進超々臨海圧発電(A-USC)の開発	(株)東芝	宮池	潔	31-2 (2010)	24
(5)	石炭ガス化複合発電(IGCC)の開発	東京大学	金子	祥三	31-2 (2010)	29
(6)	IGFCおよび将来のゼロエミッション火力発電技術	(財)電力中央研究所	麦倉	良啓	31-2 (2010)	35
[特	集]住宅における省エネルギー技術の現状と展望					
(1)	住宅分野の省エネルギーにおける歩みと展望	東京大学	坂本	雄三	31-3 (2010)	7
(2)	住宅における省エネルギー施策	国土交通省住宅局	住宅	主産課	31-3 (2010)	11
(3)	住宅躯体の高断熱化―省エネと環境の質の両立	北海道立総合研究機構	鈴木	大隆	31-3 (2010)	14
(4)	住宅設備・機器の省エネルギー手法	国土交通省	三浦	尚志	31-3 (2010)	19
(5)	住宅における再生可能エネルギーの利用とネットワーク化	三洋ホームズ(株)	細井	昭宏	31-3 (2010)	23
(6)	住宅におけるエネルギーの消費とコミッショニング	京都大学	鉾井	修一	31-3 (2010)	28
		国土交通省	三浦	尚志		
[特	集]地方自治体による環境調和型都市づくり					
(1)	地方自治体による低炭素型まちづくりに向けて	環境省	土谷	譲	31-4 (2010)	6
(2)	「つくば環境スタイル」つくば市の環境都市への挑戦	つくば市	本位I	田拓	31-4 (2010)	10
(3)	横浜が目指す低炭素都市構造への転換について	横浜市	信時	正人	31-4 (2010)	15
(4)	畜産バイオマス資源を活用した環境調和型の地域づくり					
	~「あいちゼロエミッション・コミュニティ構想」の推進~	愛知県	橋本	博巳	31-4 (2010)	20
(5)	低炭素社会に向けた「環境モデル都市・京都」の取組	京都市	弓削	貴義	31-4 (2010)	25
		<i>II</i>	浦	哲治		
(6)	堺市都心地域における低炭素地域づくり	堺市	山路	政克	31-4 (2010)	30
<i>[特</i> :	集]持続可能な産業形成:サービス化とリユース促進					
(1)	製品リユースとサービス化による省エネ・省資源の可能性	(独)産業技術総合研究所	松本	光崇	31-5 (2010)	15
(2)	リユース製品・サービス化のマーケティング戦略	(株)ア・ソッカ	中村	信夫	31-5 (2010)	20
(3)	自動車パーツのリビルド	信越電装(株)	小松	信吾	31-5 (2010)	25
(4)	電気電子製品のリユースの現状と課題	(独)国立環境研究所	田崎	智宏	31-5 (2010)	29
		"	吉田	綾		
(5)	欧州におけるリユース・サービス化の研究事例	デルフトエ科大学	高本	仁志	31-5 (2010)	34
(6)	レアメタル資源制約とリユース・リサイクルの重要性	(独)産業技術総合研究所	森本	真一郎	31-5 (2010)	39
		東京大学	醍醐	市朗		
		東北大学	松八	重一代		
<i>[特</i> :	集]クリーン開発メカニズム(CDM)の最新情報					
(1)	CDM理事会の最近の活動 (財)	日本エネルギー経済研究所	黒木	昭弘	31-6 (2010)	3
(2)	CDM指定運営機関から見たCDM/JIの活動状況	(独)日本品質保証機構	山本	重成	31-6 (2010)	7
(3)	硝酸プラントN2O分解プロジェクトのCDMの特徴 (有)ク	ライメート・エキスパーツ	上野	訓弘	31-6 (2010)	11
(4)	中国の石炭火カ発電所を対象とした方法論開発とCDM	(株)三菱総合研究所	西村	邦幸	31-6 (2010)	16
		II.	佐藤	景子		
(5)	水力発電プロジェクトのCDM活動	三菱商事(株)	中村	剛	31-6 (2010)	20
(6)	バイオガス発電プロジェクトのCDM活動	住友商事(株)	野田	英史	31-6 (2010)	24
(7)	高効率石炭火力発電とCDM 三菱UFJモル	ガン・スタンレー証券(株)	吉高	まり	31-6 (2010)	29
		"	志村	幸美		
<i>[特</i>	集]スマートグリッド実現に向けた国内外の取組み					
(1)	スマートグリッド概論	早稲田大学	林	泰弘	32-1 (2011)	22

	題目	所 属	執筆	筆者	Vol.−No. (発行年)	頁
(0)	カルルテキッギ もんこうこしの供答に立口		&E	<i>1</i> 7± -	00 1 (0011)	07
(2)	次世代エネルギー・社会システムの構築に向け	·て 資源エネルギー庁 新エネルギー・産業技術総合開発機構	飯田	健太	32-1 (2011)	27
(3)	NEDOにおけるスマートグリッドの取組み (独) スマートグリッドの国際標準化を巡る動向		諸住	哲	32-1 (2011)	30
(4) (5)	スマートグリットの国际標準化を巡る動向 電力会社におけるスマートグリッドへの取組み	九州大学 東京電力(株)	合田 岡本	忠弘	32-1 (2011) 32-1 (2011)	35 41
(6)	スマートグリッド先端技術開発の取組み	(株)東芝	林	万 秀樹	32-1 (2011)	46
(7)	次世代グリッド技術の開発	(財)電力中央研究所	小林	広武	32-1 (2011)	50
	美 <i>]地球温暖化対策と経済</i>	(別) 电力平关明元剂	11.44	ИЩ	32 1 (2011)	30
(1)	** <i> 10-15 </i>	嬰・経済モデルの役割について				
(1)	温主効木のハ門版がでたり,日本社が ***ンボバ	上智大学	有村	俊秀	32-2 (2011)	9
(2)	COP16の評価と今後の課題—日本の環境外交		澤	昭裕	32-2 (2011)	14
(3)	環境制約は商機にも、市場生かす枠組み作りを		/+ 猿山	純夫	32-2 (2011)	18
(0)	3米・光・川・川・川・川・川・川・川・川・川・川・川・川・川・川・川・川・川・川・	ロ不服の切りにこうグル	小林	辰男	02 2 (2011)	10
(4)	環境と経済生き残りのための積極的環境経済			井誠治	32-2 (2011)	22
(5)	再生可能エネルギー政治・政策と産業競争力	環境エネルギー政策研究所	飯田	哲也	32-2 (2011)	27
	集]省エネルギー照明技術の最新動向		22.		02 2 (2011)	
(1)	持続可能な社会における照明システム	高知工科大学	八田	章光	32-3 (2011)	10
(.,	1472 112 0 1221 -0017 0 11 71 7 17 1	分析工房(株)	籔本	周邦	0_ 0 (_0,1)	
		(株)インネクスト	服部	寿		
		(社)照明学会	竜子	雅俊		
(2)	LED照明製品の設計技術	東芝ライテック(株)	別所	誠	32-3 (2011)	15
(3)	電球形LEDランプの商品化動向	パナソニック(株)	明星	稔	32-3 (2011)	20
(4)	直管形LEDランプと専用照明器具の商品化動向		増子	史彦	32-3 (2011)	25
(5)	有機EL照明の技術開発の現状	NECライティング(株)	川島	康貴	32-3 (2011)	30
(6)	材料・資源の観点からの環境配慮型光源の考え		赤井	智子	32-3 (2011)	35
(7)	照明ソフト面からみた省エネルギーの実践方法		三木	保弘	32-3 (2011)	40
[特:	集]天然ガス資源開発と関連技術					
(1)	天然ガスとLNGの国際需給動向	(財)日本エネルギー経済研究所	橋本	裕	32-4 (2011)	9
(2)	非在来型天然ガス資源(シェール・ガス, CBM)の	の開発状況				
		エネルギー・環境問題研究所	石井	彰	32-4 (2011)	14
(3)	メタンハイドレートの開発状況	(独)石油天然ガス・金属鉱物資源機構	浮田	利康	32-4 (2011)	19
(4)	洋上液化技術(LNG-FPSO)の現状と展望	(株)海洋工学研究所	佐尾	邦久	32-4 (2011)	23
(5)	Gas to Liquid(GTL)の開発状況	国際石油開発帝石(株)	中村	新	32-4 (2011)	30
(6)	LNG船の技術動向	日本郵船(株)	米澤	挙志	32-4 (2011)	36
(7)	国内のLNG供給インフラについて	東京ガス(株)	木原	和行	32-4 (2011)	41
		n,	坂口	秀樹		
		n.	内野	整一		
		大阪ガス(株)	高畑	昌義		
[特:	集]環境共生社会における森林					
(1)	森林の維持に貢献する伝統文化	東京大学	月尾	嘉男	32-5 (2011)	22
(2)	我が国の森林管理と林業の将来像〜国民的ニ	一ズにいかに応えていくべきか~				
		東京大学	白石	則彦	32-5 (2011)	26
(3)	森林の多元的価値の実現のためのアプローチの	としてのPES(生態系サービスへの支払	(ハ)			
		文部科学省	柴田	晋吾	32-5 (2011)	30
(4)	REDD+(途上国における森林減少等に由来する					
		林野庁	赤堀	聡之	32-5 (2011)	
(5)	森林対策と生物多様性の六次産業化	名古屋市立大学	香坂	玲	32-5 (2011)	41
(6)	森林バイオマス資源の活用による地域振興策-					
		北海道下川町		祐二	32-5 (2011)	
(7)	世界の里山イニシアチブ	バードライフ・インターナショナル	鈴江	恵子	32-5 (2011)	51

	題目	所 属	執筆	筆者	Vol.−No. (発行年)	頁
Γ <i>Ι</i> ΕΕ-	集]新たな柔軟性メカニズムによる炭素クレジットの創	ш				
(1)	* <i>」新にな来れはアカーハムによる成果フレンフトの制は</i> 新しい炭素クレジットの動向と展望	<i>4</i> 東京大学	松橋	隆治	32-6 (2011)	11
(2)	二国間オフセット・クレジット制度による炭素クレジット			敬亮	32-6 (2011)	17
(2)	一日向カンモバープレング 前及にある次系プレング	V) 加加 性// 注入 [山家	洋志	02 0 (2011)	1,
(3)	二国間クレジット制度におけるREDD+の位置付け	(独)森林総合研究所		光朗	32-6 (2011)	22
(4)	インドネシアにおける泥炭管理によるCO2排出制御可	· 能性調査 清水建設(株)	栗田	弘幸	32-6 (2011)	27
(5)	国内クレジット制度の概要と今後の展望	日本商工会議所	宮城	勉	32-6 (2011)	31
(6)	創エネ・省エネ設備の導入によるクレジット認証	ミサワホーム(株)	上	浩之	32-6 (2011)	36
[特.	集]原子力発電に関する国外の動き					
(1)	世界のエネルギー需給における原子カエネルギー	東京大学	吉田	好邦	33-1 (2012)	21
(2)	原子力推進国(アメリカ, フランス, ロシア等)の動向	(財)エネルギー総合工学研究所	松井	一秋	33-1 (2012)	25
(3)	脱原子力国の動向	(社)日本原子力産業協会	小林	雅治	33-1 (2012)	31
(4)	新規導入国の動向	(社)日本原子力産業協会	小林	雅治	33-1 (2012)	37
(5)	原子力関連企業の対応と動向	(財)日本エネルギー経済研究所	村上	朋子	33-1 (2012)	43
(6)	IAEAにおける核燃料供給保証の新たなメカニズム	外務省	小笠	原一郎	33-1 (2012)	48
[特:	集]原子力事故を受けたエネルギー選択とその影響					
(1)	わが国のエネルギー選択をめぐる視点	(財)電力中央研究所	永田	豊	33-2 (2012)	6
(2)	震災影響を踏まえた2030年に向けた電力需給	東京大学	荻本	和彦	33-2 (2012)	11
(3)	中長期観点からの国内エネルギー需給構造のあり方	と太陽光発電の役割				
		(財)エネルギー総合工学研究所	森山	亮	33-2 (2012)	17
		II.	都筑	和泰		
		II.	石本	祐樹		
		II.	時松	宏治		
		"	萩原	直人		
(4)	震災後のエネルギー選択のあり方と課題	(財)日本エネルギー経済研究所		茂	33-2 (2012)	22
(5)	太陽光発電への代替が日本経済に及ぼす影響	東京大学		源人	33-2 (2012)	27
(6) [特 :	福島原発事故から学ぶ科学者の責任と役割 集]<i>海からのエネルギー</i>	東京大学	笠木	伸英	33-2 (2012)	32
(1)	新しい海洋温度差発電の展開と課題	佐賀大学	池上	康之	33-3 (2012)	6
		"	門出	政則		
(2)	海流発電の研究開発の動向と戦略課題について	ネットフォース(株)	梅田	厚彦	33-3 (2012)	11
(3)	潮流発電	九州大学	経塚	雄策	33-3 (2012)	17
(4)	微細藻類からのバイオ燃料製造	東京農工大学	田中	剛	33-3 (2012)	22
(5)	海水濃度差発電	東京工業大学	谷岡	明彦	33-3 (2012)	27
(6)	洋上風力発電	東京大学	鈴木	英之	33-3 (2012)	31
[特:	集]植物工場の現状と将来展望					
(1)	植物工場発展の方向性	大阪府立大学	村瀬	治比古	33-4 (2012)	4
(2)	太陽光型植物工場	千葉大学	古在	豊樹	33-4 (2012)	9
(3)	完全人工光型植物工場について	大阪府立大学	西浦	芳史	33-4 (2012)	13
(4)	ハイブリッドエコエネルギーシステムの植物工場への(株	適用について ()ダイキンアプライドシステムズ	伊能	利郎	33-4 (2012)	18
(5)	植物工場の経済学―農業・環境・地域の視点から―	桃山学院大学			33-4 (2012)	22
(6)		非営利活動法人イー・ビーイング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		健雄	33-4 (2012)	27
[特]	集]国内実証試験の段階に入ったCCS					
(1)	総論—国内外におけるCCSの技術開発と政策の動向] 電力中央研究所	下田	昭郎	33-5 (2012)	16
(2)	苫小牧地点におけるCCS大規模実証試験の概要	日本CCS調査(株)	川島	文治	33-5 (2012)	21
(3)	化学吸収法によるCO₂分離・回収技術の開発状況	関西プラント(株)	辰巳	雅彦	33-5 (2012)	27
		関西電力(株)	角野	光治		
(4)	CO ₂ 燃焼前回収技術の現状	日揮(株)	大野	拓也	33-5 (2012)	31

	題目	所 属	執筆者		Vol.−No. (発行年)	頁
(5)	日豪酸素燃焼実証プロジェクトの概要と現況	電源開発(株)	伊藤	正紀	33-5 (2012)	35
(6)	新規CO ₂ 分離回収技術開発の動向		余語	• -	33–5 (2012) 33–5 (2012)	
(0)	利元002月曜日収収削用元の到回	地球環境産業技術研究機構 		克則	33-5 (2012)	39
(7)	COSの4-40000 似的絵学 2 の期待	事事士学	甲斐	照彦	00 E (0010)	4.4
(7)	CCSのためのCO₂船舶輸送への期待	東京大学	尾崎	雅彦	33-5 (2012)	44
(8)	CO₂貯蓄技術開発の取り組み	地球環境産業技術研究機構	白垣	修	33-5 (2012)	49
	集]国内外のエネルギー管理制度の現状と最新動向	☆☆☆*	÷+	II/s>	22 6 (0010)	7
(1)	日本のエネルギー管理制度の概要と今後の方向	経済産業省	高木	聡	33-6 (2012)	7
(2)	工場におけるエネルギー管理制度の実態	日本エネルギー経済研究所	小川	順子	33-6 (2012)	12
(3)		有) 野田エネルギー管理事務所	野田	冬彦	33-6 (2012)	16
(4)	エネルギー管理の推進に於けるESCO事業の役割~群			₩=	00 0 (0040)	00
/ - \		ESCO推進協議会	古賀	裕司	33-6 (2012)	23
(5)	主要国のエネルギー管理制度の概要	省エネルギーセンター	小林	智子	33-6 (2012)	28
(6)	ISO50001の概要と最新動向	省エネルギーセンター	石原	明	33-6 (2012)	33
(7)	エネルギー管理に関する国際協力	日本エネルギー経済研究所	山下	ゆかり	33-6 (2012)	38
	集]地熱エネルギー利用の拡大					
(1)	地熱エネルギー開発の概要と最近の動向	国際科学技術財団	松永	烈	34-1 (2013)	20
(2)	最近の海外地熱開発技術	東北大学	浅沼	宏	34-1 (2013)	25
(3)	地熱資源の調査と評価	西日本技術開発(株)	田篭	功一	34-1 (2013)	29
		"	副田	宣男		
(4)	地熱発電技術について	富士電機(株)	山田	茂登	34-1 (2013)	34
(5)	日本の低温熱水系資源のエネルギー利用とその将来像		村岡	洋文	34-1 (2013)	39
(6)	秋田県湯沢市山葵沢・秋ノ宮地域の地熱開発	電源開発(株)	中西	繁隆	34-1 (2013)	44
(7)	鹿児島県白水越地域 地熱開発について	日鉄鉱コンサルタント(株)	藤貫	秀宣	34-1 (2013)	49
	集]大震災におけるエネルギー流通・供給施設被災と復旧	日対応				
(1)	エネルギー施設の新たなリスク	筑波大学	岡島	敬一	34–2 (2013)	5
(2)	東日本大震災以後の地震動評価(想定)の変化	(株)構造計画研究所	西條	裕介	34-2 (2013)	10
(3)	東日本大震災における新地発電所の被災・復旧状況	相馬共同火力発電(株)	阿部	芳重	34-2 (2013)	15
(4)	東日本大震災と都市ガス	日本ガス協会	下茂	貴博	34-2 (2013)	21
(5)	東日本大震災における製油所の被害と復旧	JX日鉱日石エネルギー(株)	宮越	一市	34-2 (2013)	26
(6)	電力流通設備の早期復旧支援技術—東日本大震災時	の事例検討—				
		電力中央研究所	朱牟I	田善治	34-2 (2013)	30
(7)	施設のリスクマネジメント	(株)竹中工務店	奥野	智久	34-2 (2013)	34
[特	集]再生可能エネルギー電気の調達に関する特別措置法	に対する取り組み				
(1)	固定価格買取制度施行後の状況と再生可能エネルギー	-導入拡大に向けた今後の課題	夏			
		経済産業省	北村	貴志	34-3 (2013)	7
(2)	各国の買取制度の概要	(株)三菱総合研究所	井上	裕史	34-3 (2013)	12
		"	渡邊	裕美子		
(3)	地方自治体がエネルギー政策に取り組む意味~熊本県	のエネルギー政策の考え方と	具体的	取組~	,	
		熊本県	正木	祐輔	34-3 (2013)	17
(4)	太陽光発電の特別措置法に対する取り組み	(株)NTTファシリティーズ	田中	良	34-3 (2013)	22
		II.	工藤	満		
(5)	小形風力発電装置市場の現状	ノンフォニアテクノロジー(株)	西小	野寛明	34-3 (2013)	27
		"	塩崎	明		
(6)	中小水力発電の特措法に対する取り組み	(株)東芝	戸田	一典	34-3 (2013)	32
(7)	固定価格買取制度における木質バイオマス発電の動向		宮島	欣幸	34-3 (2013)	
	集]スマートハウス	Vieto, S. S.		1	(2010)	
(1)	~」、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	早稲田大学	林	泰弘	34-4 (2013)	13
(2)	公知で標準的なインターフェイスによるスマートハウス設		梅嶋	真樹	34-4 (2013)	18
(3)	次世代自動車とスマートコミュニティー	トヨタ自動車(株)	岡島	博司	34-4 (2013)	
(0)	71-11-11-11	· - / ロッナ (M/)	,,		2 (20.0)	

	題目所属	執筆	筆者	Vol.−No. (発行年)	頁 ——
(4)	住宅メーカーから見たスマートハウスの技術、課題 積水化学工業(株)	塩	将一	34-4 (2013)	29
(5)	スマートハウスにおけるHEMS技術の開発と実証 三菱電機(株)	坂本	忠昭	34-4 (2013)	33
(3)	スマードバッスにおけるFEMIS技術の例光と夫証 二変电版(休)	丸山	一郎	34-4 (2013)	33
	"	矢部	正明		
	"	ス in 峯澤	聡司		
(6)	" 海外におけるスマートハウス開発の状況 (株)野村総合研究所	全/学 山内	邮明	34-4 (2013)	38
	集]ヒートポンプ技術の進展と応用	—,,		0 (20.0)	
(1)	NEDOによるヒートポンプ技術開発 新エネルギー・産業技術総合開発機構	甘利	猛	34-5 (2013)	16
(2)	冷媒の規制と動向 日本冷凍空調工業会	松田	憲兒	34-5 (2013)	22
(3)	グローバル冷凍空調市場の動向 日本冷凍空調工業会	岸本	哲郎	34-5 (2013)	26
(4)	家庭用ヒートポンプの現状と展望 パナソニック(株)	西脇	文俊	34-5 (2013)	31
(5)	地中熱利用ヒートポンプの現状と展望 北海道大学	長野	克則	34-5 (2013)	36
(6)	ビル用マルチエアコンの現状と展望 三菱電機(株)	青山	豊	34-5 (2013)	43
(7)	産業用ヒートポンプの現状と課題・中部電力(株)	渡邉	澂雄	34-5 (2013)	48
	集]熱エネルギーの高効率利用				
(1)		角口	勝彦	34-6 (2013)	12
(2)	熱を逃がさない 高性能真空断熱材の開発 パナソニック(株)	湯淺	明子	34-6 (2013)	17
(3)	熱電変換で進む未利用熱エネルギーの有効活用 産業技術総合研究所	太田	道広	34-6 (2013)	22
	"	山本	淳		
(4)	鉄鋼プロセスにおける省エネと熱利用 JFEスチール(株)	斉間	等	34-6 (2013)	27
(5)	化学会社におけるエネルギー管理―(株)カネカの省エネルギー活動について―				
	(株)カネカ	古川	直樹	34-6 (2013)	32
	II.	森角	良作		
(6)	電気自動車における熱損失マネージメント 日産自動車(株)	門田	英稔	34-6 (2013)	37
(7)	中小製造の熱・エネルギー利用 (株)ファンクショナル・フルイッド	藤岡	惠子	34-6 (2013)	42
[特:	集]水素エネルギー利用社会に向けた取り組み				
(1)	将来エネルギーとしての水素の可能性 地球環境産業技術研究機構	山地	憲治	35-1 (2014)	19
	エネルギー総合工学研究所	笹倉	正晴		
(2)	高効率な液化水素製造及び輸送・貯蔵技術 岩谷産業(株)	中島	康広	35-1 (2014)	25
(3)	2015年に向けて動き出した燃料電池車 トヨタ自動車(株)	広瀬	雄彦	35-1 (2014)	29
(4)	商用モデル水素ステーションにおけるHySUTの最近の実証				
	水素供給・利用技術研究組合	石川	洋一	35-1 (2014)	33
(5)	水素供給インフラ整備のための規制見直しの動向 日本ガス協会	西井	匠	35-1 (2014)	38
	II .	浦辺	安彦		
(6)	CO ₂ フリー水素の導入構想 川崎重工業(株)	西村	元彦	35-1 (2014)	43
	II .	吉野	泰		
	H	吉村	健二		
	"	原田	英一		
(7)	水素キャリアとしてのアンモニア利用 エ学院大学	雑賀	高	35-1 (2014)	47
(8)	日本のエネルギーミックスにおける輸入水素導入の意義 日本エネルギー経済研究所	松尾	雄司	35-1 (2014)	52
	集]放射性物質と放射線―その基礎から除染まで―				
(1)	総論:福島第一原子力発電所事故の影響東京大学	森口	祐一	35-2 (2014)	4
(2)	核分裂炉における放射性物質の生成及び燃料サイクルの基礎 京都大学	森山	裕丈	35-2 (2014)	10
(3)	放射線・放射能の発見・利用の歴史と放射線衛生学 国立保健医療科学院	欅田	尚樹	35-2 (2014)	16
(4)	放射性物質の陸域への影響 筑波大学	若月	泰孝	35-2 (2014)	23
	ıı	青山	智夫		
(5)	放射性核種の海洋環境への影響東京海洋大学	神田	穣太	35-2 (2014)	
(6)	福島の環境回復―事故後3年の除染 日本原子力研究開発機構	中山	真一	35-2 (2014)	33
(7)	放射能汚染廃棄物の中間貯蔵及び処理処分における技術的課題 国立環境研究所	大迫	政浩	35-2 (2014)	38

	題目	ච	f 属	執筆	筆者	Vol.−No. (発行年)	頁
「特	集]都市内の分散型エネルギーシステム						
(1)	都市のエネルギーシステムの現状と課題, 今後の展望	横浜	国立大学	佐土原	東 聡	35-3 (2014)	5
(2)	ESCO事業の現状と効果	(株)住環境計	画研究所	村越	千春	35-3 (2014)	9
			"	辻丸	達憲		
			"	山本	高広		
		ESCO推	進協議会	布施	征男		
(3)	横浜市のESCO事業について	横浜	市建築局	本田	裕一	35-3 (2014)	14
			"	横野	幸一		
			"	塚越	理文		
(4)	地域におけるエネルギー有効利用計画制度とエネルギーダ	効率の向上 東京	都環境局	植木	博章	35-3 (2014)	20
(5)	新宿新都心地域冷暖房の新しい展開	(株)エネルギーア	ドバンス	田中	一史	35-3 (2014)	25
(6)	六本木ヒルズにおける自立型エネルギーシステムの取り組	.H					
	六本	木エネルギーサー	ビス(株)	古島	潔	35-3 (2014)	29
(7)	集合住宅団地におけるエネルギーマネジメント (株)フ	ァミリーネット・	ジャパン	内田	鉄平	35-3 (2014)	33
		野村不	動産(株)	石田	恭子		
[特	集]非在来型化石燃料を取り巻く状況						
(1)	非在来型化石燃料の将来性		京都大学	松岡	俊文	35-4 (2014)	4
			"	本田	博巳		
(2)	石油・天然ガスのマーケット情勢 石油天	然ガス・金属鉱物	資源機構	野神	隆之	35-4 (2014)	13
(3)	北米の非在来型天然ガス・石油の開発状況	大阪	ガス(株)	久米	辰雄	35-4 (2014)	20
(4)	米国におけるLNG輸出の動向	住友	商事(株)	瀬長	恵梨	35-4 (2014)	26
(5)	豪州のCSG(コールシームガス)開発状況	東京	ガス(株)	奥井	智治	35-4 (2014)	31
			"	八尾	右美子		
(6)	カナダにおけるシェールガス採掘技術の最新動向	国際石油開発	帝石(株)	浦野	剛	35-4 (2014)	36
(7)	凝集磁気分離システムの随伴水処理への展開	(株)日	立製作所	滑川	隆	35-4 (2014)	41
[特	集]エネルギー・資源に関する技術の標準化への取組みとそ	一の適用					
(1)	スマートグリッドに関する戦略的な国際標準化への取組みの	の重要性 経	済産業省	土井	良治	35-5 (2014)	21
(2)	UHV送電技術の国際標準化	東京	電力(株)	財満	英一	35-5 (2014)	
(3)	蓄電複合システムインターフェース		(株)東芝		良雄	35-5 (2014)	
(4)	IEEE1888を用いたインターネット型オープンBEMS		東京大学	江崎	浩	35-5 (2014)	36
			"	落合			
(5)	ECHONET Liteを用いたHEMS技術	パナソニ		村上	隆史	35-5 (2014)	41
			工科大学				
(6)	電気自動車用急速充電システムCHAdeMO方式	東京	電力(株)		武史	35-5 (2014)	
(7)		エレクトロヒート				35-5 (2014)	50
	オープン・フードサービス・				保夫		
(8)	LNGタンク用7%ニッケル鋼板技術	大阪	ガス(株)			35-5 (2014)	54
			"		眞輝		
		新日鐵	住金(株)	加茂	孝浩		
			"	2470	年通		
		トーヨーカ	ネツ(株)		秀一		
ʃ娃	集]車載用蓄電デバイスの最新動向		"	密本	巨彦		
(1)	#3 年載	经	済産業省	成田	裕幸	35-6 (2014)	9
(2)	キャパシタハイブリッド型鉛蓄電池UltraBattery		電池(株)		有一	35-6 (2014)	
_/	, , , , , , , , , , , , , , , , , , ,	H 73	11 (IV)		淳	(2011)	
(2)	こく コマサのナ形川チウ / ノナン・電池	(++\ 0	C 7 7#		• •	25-6 (2014)	17

(3) GSユアサの大形リチウムイオン電池

(株) G S ユアサ 北村 雅紀 35-6 (2014) 17

	題目	所属	執	筆者 ———	Vol.−No. (発行年)	頁
(4)	NECの大型リチウムイオン電池開発と蓄電システム応用	NECエナジーデバイス(株	太田	智行	35-6 (2014)	22
(4)	NEOの人主アアプムイオン电心研究と留电フステム心内				00 0 (2014)	22
		日本電気(株)		務		
		NECエナジーデバイス(株)		勝		
(5)	アイドリングストップ車用リチウムイオン電池SCiB™	(株)東芝			35-6 (2014)	26
(0)	ノ ロ フンノハ フン 中川ファ フム 13つ 電池の間	In the second		浩次	00 0 (2011)	
(6)	リチウムイオン電池(LIB)の最新動向	産業技術総合研究所			35-6 (2014)	30
(7)	高安全性・耐熱性リチウムイオン電池の開発	産業技術総合研究所		哲男	35-6 (2014)	35
, ,		1			, ,	
		1.				
		1.	柳田	昌宏		
(8)	電気二重層キャパシタの車載用途への応用	日本ケミコン(株)	渡邊	晋	35-6 (2014)	40
, ,		1		治樹	, ,	
[特:	集]未来の文明社会を支える持続可能な開発のための教育	(ESD)				
(1)	【総説】ESDに関するユネスコ世界会議における今後のES		言			
, ,		富山県立大学	-	徳泰	36-1 (2015)	25
(2)	グローバリゼーションのもとでの環境教育・ESD, 自己変容	よ社会変容の学習の連関	に向けて	_		
		東京都市大学			36-1 (2015)	33
(3)	国際教育とESD:大学の国際教育実践からみる地域と世界	界をつなぐESDとしての可能	:性			
, ,		東京農工大学		リム さち	36-1 (2015)	38
(4)	生物多様性と持続可能な開発のための教育(ESD)	国連大学	· 鈴木	涉	36-1 (2015)	43
		1	安田	左知子		
(5)	開発教育とESD	拓殖大学	5 石川	一喜	36-1 (2015)	48
(6)	エネルギー・資源,気候変動とESD	豊橋技術科学大学	後藤	尚弘	36-1 (2015)	53
[特:	集]リスク・不確実性とエネルギー政策					
(1)	震災後日本のエネルギー政策	京都大学	植田	和弘	36-2 (2015)	6
(2)	原子力政策とリスク:読めない未来に備えて	長崎大学	鈴木:	達治郎	36-2 (2015)	11
(3)	リスクの視点から見た再生可能エネルギー政策	地球環境産業技術研究機構	」 山地	憲治	36-2 (2015)	16
(4)	エネルギー基本計画の課題と問題点	一橋大学	植 橘川	武郎	36-2 (2015)	19
(5)	電源の運転リスクと電力システム改革	(株)富士通総研	F 高橋	洋	36-2 (2015)	24
(6)	エネルギー政策の国際的動向 ―米国, 中国, ドイツの政	なまで検証する─				
		京都大学	山家	公雄	36-2 (2015)	29
(7)	原子力発電所事故が発生した福島のエネルギー政策	いわき明星大学	東	之弘	36-2 (2015)	35
[特:	集] 民生部門の省エネルギーとその促進策					
(1)	家庭における省エネルギー	東京大学	吉田	好邦	36-3 (2015)	6
(2)	省エネルギーバリアとその解消策─「見える化」などの情報	報提供に求められるもの─				
		電力中央研究所	f 西尾	健一郎	36-3 (2015)	10
(3)	デマンドレスポンスの実証実験とその結果	京都大学	佐田	高典	36-3 (2015)	15
		1.	王	文杰		
(4)	パッシブクーリング手法を複合的に組み合わせた省エネル	レギー住宅街区設計				
	(株) ミサワホーム総合研究所	i 太田	勇	36-3 (2015)	20
		1.	飯島	雅人		
		1.	平山	由佳理		
		1.	佐藤	理人		
(5)	行動変容と省エネルギー	(株)住環境計画研究所	f 平山	翔	36-3 (2015)	24
(6)	英国グリーンディール政策	科学技術振興機構	高瀬	香絵	36-3 (2015)	29
(7)	日本版グリーンディールの政策デザイン―グリーン成長を	·推進する事業体構想—				
		東京大学	松橋	隆治	36-3 (2015)	34

頁

[特:	集]省エネ化に貢献するパワーデバイスの最新動向					
(1)	パワーデバイスの最新動向	金沢工業大学	小山	正人	36-4 (2015)	12
(2)	進化するシリコンパワーデバイス	富士電機(株)	山﨑	智幸	36-4 (2015)	17
(3)	シリコンパワーデバイス―三菱IGBTモジュール技術―	三菱電機(株)	マシ゛コ	ムタ゛ール I゛ーラフ゛	36-4 (2015)	21
(4)	車載用SiCパワーデバイスの開発動向	(株) デンソー	鶴田	和弘	36-4 (2015)	26
(5)	SiCパワーデバイスの特長と応用	ローム(株)	中原	健	36-4 (2015)	30
		"	中村	孝		
(6)	GaNパワーデバイス	パナソニック(株)	上田	哲三	36-4 (2015)	35
(7)	酸化ガリウムパワーデバイス研究開発の現状	情報通信研究機構	東脇	- 正高	36-4 (2015)	39
(8)	ダイヤモンドパワーデバイス	産業技術総合研究所	梅沢	仁	36-4 (2015)	43
	集]再生可能エネルギーと電力自由化	— · · · · · · · · · · · · · · · · · · ·				
(1)		が 東京大学	横山	明彦	36-5 (2015)	8
(2)	内外における電力自由化と再生可能エネルギーに関する					
. ,		電力中央研究所	矢島	正之	36-5 (2015)	13
(3)	自由化後の再生可能エネルギーの大量導入と電力経営	電力中央研究所	服部	徹	36-5 (2015)	18
(4)	日本の広域運用の今後	電力広域的運営推進機関	石坂	匡史	36-5 (2015)	23
(5)	欧州にみる再生可能エネルギーが増大する中での系統問		立松	正幹	36-5 (2015)	27
(6)	自然変動電源・蓄電池のコスト低減見通しと大規模普及に				00 0 (20.0)	
(0)		科学技術振興機構	井上	智弘	36-5 (2015)	32
(7)	英国EMR(電力市場改革)が示唆するもの	海外電力調査会	奈良	長寿	36-5 (2015)	37
(8)	電力自由化・FIT(固定価格買取制度)とグリーン電力	日本エネルギー経済研究所	工藤	拓毅	36-5 (2015)	41
(0)		H-1 130 (420101200)		11-32	00 0 (2010)	• • •
(9)	電力自由化に向けた地域主導型再エネビジネスの現状と	課題 科学技術振興機構	吉岡	副	36-5 (2015)	46
	集]太陽光発電システムの火災リスクと安全性					
(1)	総説:太陽光発電設備の安全に関する課題提出と意見表	明(1)				
(,,	~工学を越えて行動科学による方略へ~	(有) 吉富電気	吉富	政宣	36-6 (2015)	10
		産業技術総合研究所	加藤	和彦		
(2)	総説:太陽光発電設備の安全に関する課題提出と意見表					
_ /	~工学を越えて行動科学による方略へ~	(有) 吉富電気	吉富	政宣	36-6 (2015)	20
		産業技術総合研究所	加藤	和彦		
(3)	消防研究センターの消火活動安全への取組	消防庁消防研究センター	田村	裕之	36-6 (2015)	27
(4)	PVシステム火災と消火活動時の発電停止技術	能美防災(株)	山岸	貴俊	36-6 (2015)	32
(5)	太陽光発電設備における直流電気事故対策	JX日鉱日石エネルギー(株)	石井	隆文	36-6 (2015)	37
(6)	太陽光発電システムの直流電気安全性に関する基盤整備					
(-,		産業技術総合研究所	大関	崇	36-6 (2015)	45
(7)	太陽光発電の国際標準化	日本電機工業会	吉田	功	36-6 (2015)	50
「特	集]エネルギー環境政策のモデル分析					
(1)	政策分析ツールとしてエネルギーモデルの概要	東京理科大学	森	俊介	37-1 (2016)	28
(2)	AIMアジア太平洋統合評価モデル	国立環境研究所	増井	利彦	37-1 (2016)	33
(3)	GTAP多部門動学的一般均衡モデル	高知工科大学	伴	金美	37-1 (2016)	38
(4)	日本経済の一般均衡モデルによるエネルギー・環境政策					
, ,		慶應義塾大学	野村	浩二	37-1 (2016)	43
(5)	日本エネルギー経済研究所「計量経済モデル」	日本エネルギー経済研究所	柳澤	明	37-1 (2016)	48
(6)	MARKAL(MARKet Allocation)モデル	東京大学		山涼一	37-1 (2016)	52
(7)	統合評価モデルGRAPE	エネルギー総合工学研究所	黒沢		37-1 (2016)	57
(8)	DNE21+一世界エネルギー・温暖化対策モデル	地球環境産業技術研究機構		圭吾	37-1 (2016)	62
	集]モータにおける省エネルギー・省資源化				/	
(1)	モータにおける省エネルギー・省資源化の取組み					
,		ドー・産業技術総合開発機構	江森	芳博	37-2 (2016)	11
	177				= \=/	

	題 目	所	属	執筆	色者	Vol.−No. (発行年)	頁
(2)	トップランナーモータの高性能化技術	三菱電梯	*(株)	仲	興起	37-2 (2016)	16
(3)	永久磁石の高性能化技術	日立金属		·· 丸川	泰弘	37-2 (2016)	21
(4)		・ パナソニック		西山	典禎	37-2 (2016)	27
(5)	開発事例1:電気自動車におけるモータ		· 大学	森本	雅之	37-2 (2016)	33
(6)	開発事例2:ロボットにおけるモータ	大阪工業		本田	幸夫	37-2 (2016)	39
	集]Minerals-Energy Nexus(鉱物資源とエネルギーのネクサス)					(,	
(1)	鉱物資源とエネルギーのネクサス	東京	大学	村上		37-3 (2016)	11
		京都	水大学	Benjar Mcl	min C. Lellan		
(2)	The Mineral Resources-Energy Technologies Nexus: An Optimistic A					/ /	
(3)	(鉱物資源とエネルギー技術のネクサス:楽観的な評価) Moi グリーンエネルギーに必要な海底鉱物資源の開発の現状	nash Unive	rsity	Gavin I	M. Mudd	37–3 (2016)	15
	石油天然ガス・金	仓属鉱物資源	原機構	岡本	信行	37-3 (2016)	21
(4)	Energy-Mineral Nexus: Tensions between Integration and Reconfigur (エネルギーと鉱物のネクサス: 統合か再構築か)	ration					
	University of Tec	chnology S	ydney	Damien	Giurco	37-3 (2016)	26
			"	Sven	Teske		
			"		a Fam		
			"	Nick F	lorin		
(5)	低炭素社会に向けたベースメタルの長期的な消費動向─銅の事例を						
		東京	大学	木下	裕介	37–3 (2016)	32
(6)	Complete Utilisation of Coal—Energy, Ash and Rare Metals			D !			
	(石炭の完全利用―エネルギー, 石炭灰, そしてレアメタル) K	yoto Unive	rsity	Benja Mcl	nın c. Lellan	37-3 (2016)	37
(7)	太陽光発電に使用される鉱物資源 石油天然ガス・金	È属鉱物資 源	原機構	有賀	大輔	37-3 (2016)	43
[特:	集]今, 内燃機関がおもしろい ~進化するレシプロエンジン~						
(1)	主役を担い続ける内燃機関:特集企画趣旨説明		支大学	岡島	敬一	37-4 (2016)	6
(2)	SIP革新的燃焼技術の取組―日の丸内燃機関が地球を救う計画―		内閣府	杉山	雅則	37-4 (2016)	7
(3)	自動車用新世代クリーンディーゼルエンジン	マツタ			真一	37-4 (2016)	12
(4)		トヨタ自動耳		西浦	博之	37-4 (2016)	17
(5)	大型二輪車用 過給エンジンの開発	川崎重工業		市	聡顕	37-4 (2016)	22
(6)	産業用コージェネ/発電用ガスエンジンの開発	三菱重工業		長船信		37-4 (2016)	28
(7)	船舶用エンジンの最新動向 ―各国排気ガス規制と対応技術―	ヤンマー	- (株)	中堀	増博	37–4 (2016)	33
			"	前谷			
			"	滋沢	和男		
			"	高畑	輝光		
			"	赤澤			
				村井	誠		
(8)	自動車用ガソリンエンジン正味熱効率45%達成技術 (株))本田技術研		田岸前		37–4 (2016)	38
[特:	集]微粒子とマイクロ/ナノカプセルが拓くエネルギー・資源の未来		"	池谷饭	建一郎		
(1)	エネルギー・資源・環境分野における材料開発ナノテク材料<微粒子	-・マイクロ/	/ナノナ	ウプセル	>~o)期待	
		大阪ガス	ス(株)	岸本	章	37-5 (2016)	16
(2)	微粒子とマイクロ/ナノカプセルの製造と応用	新潟	昌大学	田中	眞人	37-5 (2016)	17
(3)	空調負荷軽減と室内環境改善に寄与する調湿性マイクロ/ナノカプイ	セル					
	都城工	C業高等専門	門学校	清山	史朗	37-5 (2016)	22
		宮崎	奇大学	塩盛引	ム一郎		
(4)	金属イオン抽出機能を持つ抽出剤内包マイクロ/ナノカプセル	宮崎	奇大学	塩盛引	ム一郎	37-5 (2016)	26
	都城工	C業高等専門	『学校	清山	史朗		

(5)	生分解性物質、廃棄物を利用した機能性微粒子およびマー	イクロ/ナノカプセル				
		新潟大学	田口	佳成	37-5 (2016)	32
(6)	脱窒細菌を固定化する多孔質マイクロ/ナノカプセルを用	いた硝酸性窒素除去技術の	開発			
		鹿児島大学	吉田	昌弘	37–5 (2016)	37
		"	武井	孝行		
		(株)MCラボ	幡手	泰雄		
		都城工業高等専門学校	清山	史朗		
		宮崎大学	塩盛	弘一郎		
(7)	サッチ分解菌内包マイクロ/ナノカプセルを用いた芝生の	サッチ層分解の実証試験				
		(株)MCラボ	幡手	泰雄	37-5 (2016)	41
		鹿児島大学	吉田	昌弘		
		II.	武井	孝行		
(8)	放射性物質による汚染水を浄化する固定化微生物	鹿児島大学	武井	孝行	37-5 (2016)	46
		国立環境研究所	冨岡	典子		
		鹿児島大学	吉田	昌弘		
[特4	集]エネルギー・資源のこれまでとこれから					
特集	: "エネルギー・資源のこれまでとこれから"について	京都大学	手塚	哲央	37-6 (2016)	7
(1)	火力発電プラントの効率向上	三菱重工業(株)	石黒	達男	37-6 (2016)	8
(2)	CCS/Uの課題と期待	(株)東芝	斎藤	聡	37-6 (2016)	10
(3)	代替燃料車の普及に向けた展望	(株)三菱総合研究所	志村加	雄一郎	37-6 (2016)	12
(4)	省エネと空調設備のせめぎ合い (株)関係	『エネルギーソリューション	助飛	羅力	37-6 (2016)	14
(5)	セルロース性バイオマスの酵素糖化における現状と課題	大阪府立大学	炭谷	順一	37-6 (2016)	16
(6)	次世代自動車を支える電池技術開発のこれまでとこれから	ら 産業技術総合研究所	谷本	一美	37-6 (2016)	18
(7)	家庭用燃料電池及び水素社会への取り組み	パナソニック(株)	東條	直人	37-6 (2016)	20
(8)	エネルギーモデル分析の光と影	電力中央研究所	永田	豊	37-6 (2016)	22
(9)	新たなエネルギーマネジメントの実現に向けて	関西電力(株)	樋口	誠一	37-6 (2016)	24
(10)	これからの燃料電池に求められる役割	東京ガス(株)	藤田	碩二郎	37-6 (2016)	26
(11)	SDG:持続可能な開発目標」のための資源供給	京都大学	Benja	ımin C.	37-6 (2016)	28
(11)	持続可能な開発のためのエネルギー・資源の役割		Мо	Lellan	37 0 (2010)	20
(12)	電気化学デバイスへの期待	三菱電機(株)	光田	憲朗	37-6 (2016)	30
	明日を支える資源:資源制約再訪	東京大学	村上	進亮	37-6 (2016)	32
	建築部門の低炭素化に向けて	横浜国立大学		聡	37-6 (2016)	
	エネルギー需要の長期展望を考える	日本エネルギー経済研究所	呂	正	37–6 (2016)	36
	集]バイオマス発電への期待と課題					
(1)	超低炭素時代に向けたバイオエネルギーの普及戦略パリ	協定=再エネ加速の時代				
		(株)日本総合研究所	井熊	均	38-1 (2017)	19
(2)		やまがたグリーンパワー(株)	鈴木		38-1 (2017)	
(3)	PKS(パームヤシ殻)による木質バイオマス発電事業の運	営 イーレックス(株)			38-1 (2017)	
(4)	清掃工場におけるごみ焼却熱を利用したバイオマス発電	佐賀市		山浩稔	38-1 (2017)	33
		II.		清隆		
(5)	下水道バイオマスを利用した燃料電池発電システム	メタウォーター(株)	山内	涉	38-1 (2017)	38
		II.		川行教		
(6)	バイオマス発電への循環流動層ボイラ適用事例	JFEエンジニアリング(株)	内海	高博	38-1 (2017)	43
(7)	食品廃棄物の飼料化と嫌気性消化発電の複合プラントシス	ステム				
		沿環境エンジニアリング(株)	森本	清幸	38-1 (2017)	47
	集]エネルギーに関するサイバーセキュリティの現状と対応					
(1)	エネルギー・資源分野におけるサイバーリスクの観測と対			圭史	38-2 (2017)	6
(2)	電力・エネルギー分野のサイバーセキュリティと情報共有を					
	パロ	コアルトネットワークス(株)	松原	実穗子	38-2 (2017)	11

	題目	所属	執	筆者 ———	Vol.−No. (発行年)	頁
(3)	重要インフラのサイバーセキュリティ対策 制御システム	ムセキュリティセンタ-	- 新	誠一	38-2 (2017)	17
(4)	電力分野におけるサイバーセキュリティ確保の取組み	電力中央研究所		善積	38-2 (2017)	21
(5)	建物設備システムリファレンスガイドについて	(株)竹中工務局		貴司	38-2 (2017)	27
(6)	Society 5.0の実現に向けたセキュリティーのあり方とエネルギ			,,,,	00 2 (2017)	
(0)		東京大学	学 江崎	浩	38-2 (2017)	32
「特 1	集]非ナフサ原料からの化成品製造技術		,,	7-	00 2 (2017)	02
(1)	将来の化学品原料源の選択と開発すべき技術	三井化学(株) 市川	真一郎	38-3 (2017)	7
() /	13 NOV 10 1 HUNNI IMPOSED NEIDINGS CIXIII		, 藤田	照典	00 0 (2017)	,
(2)	メタン化学変換のための革新的触媒開発	神奈川大学		涉	38-3 (2017)	12
(3)	ナフサ代替原料を用いたエチレン・プロピレン製造技術メタノー			19	00 0 (2017)	12
(0)	プロピレン製造およびプロパン脱水素によるプロピレン製造技		ド室井	髙城	38-3 (2017)	17
(4)	二酸化炭素と水素からのメタノール合成技術	三井化学(株		雅美	38-3 (2017)	21
(5)	一般に灰糸と小糸がらのグランール 日成技術 再生可能エネルギーを用いた水素製造技術─光触媒を用いた			作天	36-3 (2017)	21
(3)	中土可能エイルイーを用いた小糸表直接側 九ा 地球を用いて	東京理科大学		昭彦	38-3 (2017)	25
(e)	生体触媒によるエタノールおよびプロパノール製造技術					
(6)		三井化学(株		光史	38-3 (2017)	30
(7)	生体触媒による木質バイオマスからグルコースへの化学変換			英孝	38-3 (2017)	35
(8)	・木質バイオマスの化成品原料への変換技術 ****・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	産業技術総合研究所 キャナ	斤 山口	有朋	38-3 (2017)	39
	集] <i>ネット・ゼロ・エネルギー・ハウス(ZEH)の過去から現在, 未,</i>		.	π# .L_	00 4 (0047)	4.0
(1)	ゼロ・エネルギー住宅とクリマデザイン	首都大学東京	小泉	雅生	38-4 (2017)	12
(2)	日本の家庭部門に対するエネルギー政策の視点からのゼロコ			- "		
	A	法政大学			38-4 (2017)	17
(3)	住宅メーカーのZEHへの取組み・現状と課題	旭化成ホームズ(株		正明	38-4 (2017)	22
(4)	ZEHの推進における住宅電気設備の果たす役割と課題	パナソニック(株			38-4 (2017)	27
(5)	住まい手の能動的な行動・高度な快をひき出す放射環境デザ			雅也	38-4 (2017)	33
(6)	ゼロ・エネルギー・マス・カスタム住宅(ゼムク)の国際的動向	メルボルン大	学 野口	まさ	38-4 (2017)	38
[特]	集]地球温暖化対策としてのカーボンプライシングの有効性					
(1)		国立環境研究所	斤 亀山	康子	38-5 (2017)	12
(2)	パリ協定実施に向けたカーボンプライシングに関する一考察					
	日本	本エネルギー経済研究所	斤 工藤	拓毅	38-5 (2017)	16
(3)	日本でカーボンプライシングの導入は有効か	JFEスチール (株) 手塚	宏之	38-5 (2017)	22
(4)	カーボンプライシングの経済分析:事前評価と事後評価	早稲田大	单 有村	俊秀	38-5 (2017)	27
(5)	EU・カリフォルニア州の教訓を基にした排出量取引制度設計	WWFジャパン	ノ 山岸	尚之	38-5 (2017)	34
(6)	カーボンプライシングの理論と実際:現在の日本において導入	は必要か?				
	キヤノン	ングローバル戦略研究所	斤 杉山	大志	38-5 (2017)	39
(7)	カーボンプライシングの是非論を超えて	東京大学	ዾ 松橋	隆治	38-5 (2017)	46
(8)	低炭素社会に向けた企業によるCreating Shared Value(CSV)	の活用東京大学	幸西 寺西	たから	38-5 (2017)	52
[特]	集]物流における環境イノベーション					
(1)	持続可能な物流システム構築のために ~総論:物流の環境問	引題と対策~				
		東京都市大学	学 増井	忠幸	38-6 (2017)	16
(2)	自動運転トラックの隊列走行:その効果と課題	産業技術総合研究所	斤 津川	定之	38-6 (2017)	24
(3)	気象データを活用した省エネ物流プロジェクト	日本気象協会	、 小越	久美	38-6 (2017)	29
(4)	商用車のCO₂削減への取り組み	日野自動車(株)通阪	久貴	38-6 (2017)	
	-		, 石森	崇		
(5)	荷主連携による生産性向上並びに省エネ施策の研究					
. ,		スティクスシステム協会	· 北條	英	38-6 (2017)	39
		日本能率協会総合研究所			- (//	
(6)	冷蔵倉庫のノンフロン化と省エネルギー	(株)三菱総合研究所			38-6 (2017)	44
(7)	船舶の燃費改善と船舶運航・性能管理システム	日本海事センター		清二郎	38-6 (2017)	
(1)	apag 7 mm 大 久 日 こ mp mg 左 mt 一 上 m 日 在 7 7 7 7 4			カーゴッ 当繁	55 5 (25 17)	10
		•	水平	141 YK		

	題目	所 属	執	筆者	Vol.−No. (発行年)	頁
「特』	集]エネルギー需要予測の最新技術					
(1)	エネルギー需要の予測	大阪大学	下田	吉之	39-1 (2018)	26
(2)	家庭の世帯別エネルギー需要予測の方法	電力中央研究所	近藤	修平	39-1 (2018)	30
(3)	世帯群の合計電力需要曲線の推計・予測手法	JXTGエネルギー	森田	圭	39-1 (2018)	35
		名古屋大学	加藤	丈佳		
(4)	ビル等におけるエネルギー需要予測とその利用	竹中工務店	茂手:	木直也	39-1 (2018)	40
(5)	地域スケールでの業務施設エネルギー需要推計方法	大阪大学	山口	容平	39-1 (2018)	45
		"	松岡	綾子		
(6)	供給エリア内の電力需要の予測システムと太陽光発電の出力予測	則 関西電力	松原	雄樹	39-1 (2018)	50
(7)	太陽光発電システムの出力予測の方法	産業技術総合研究所	大竹	秀明	39-1 (2018)	55
[特]	集]下水道におけるエネルギー・資源の有効利用の現状と将来展室	7				
(1)	下水道におけるエネルギー・資源の有効利用への期待	日本大学	森田	弘昭	39-2 (2018)	8
(2)	東京都下水道局におけるエネルギー対策の取組	東京都下水道局	渡辺	洋史	39-2 (2018)	15
(3)	運転監視制御システムの高度化による下水処理施設の消費エネ	ルギー削減への取り	組み			
		東芝	山中	理	39-2 (2018)	20
(4)	佐賀市下水浄化センターで創る下水道資源の好循環	佐賀市上下水道局	橋本	翼	39-2 (2018)	26
(5)	管路内設置型熱回収技術を用いた下水熱エネルギーの利用	積水化学工業	井上	将男	39-2 (2018)	31
(6)	UF膜ろ過とUV消毒を用いた再生水システムの実証研究	西原環境	永松	真一	39-2 (2018)	36
		"	小関	進介		
(7)	下水道からリンを回収する取組み	水ing	萩野	隆生	39-2 (2018)	40
		"	古賀	大輔		
[特]	集]水素社会形成のための水素キャリア技術の最新動向					
(1)	エネルギーキャリアとしての水素	産業技術総合研究所	竹市	信彦	39-3 (2018)	12
		"	栗山	信宏		
(2)	国際液化水素サプライチェーンの技術構築の現状	川崎重工業	西村	元彦	39-3 (2018)	15

[特集]水素社会形成のための水素キャリア技術

		"	洲河	誠一		
(3)	水素供給インフラ技術の現状と課題	岩谷産業	辻上	博司	39-3 (2018)	20
(4)	世界的な水素推進組織Hydrogen Councilの紹介とCouncillこ	kる最新の研究成果の紹	介			
	Hydrogen	Council/トヨタ自動車	広瀬	雄彦	39-3 (2018)	25
(5)	有機ケミカルハイドライド法水素貯蔵輸送技術と将来の展望	千代田化工建設	岡田	佳巳	39-3 (2018)	30
(6)	水素エネルギーキャリアとしてのアンモニア	住友化学	塩沢	文朗	39-3 (2018)	35
(7)	水素サプライチェーンに資する水素吸蔵合金	日本製鋼所	伊藤	秀明	39-3 (2018)	40
(8)	水素サプライチェーンに資する高圧水素容器	JFEコンテイナー	高野	俊夫	39-3 (2018)	45

[特集] Water-Energy Nexus 水とエネルギーの連環

(1)	水とエネルギーのネクサス(連環)	京都大学	Benjamin C. McLellan	39-4 (2018)	15					
(2)										
	The Celesti	al Earth	Anindya Bhattacharya	39-4 (2018)	21					
		"	Aksa Antony							
(3)	The Importance of Assessing Cumulative Impacts on Water: CSG Developme	ent in Aust	tralia							
	The Heimen it of 0.		C V:l.	00 4 (0010)	00					

The University of Queensland Sue Vink 39-4 (2018) 26

(4) 水文学から見た水・エネルギー連環の主な要素と最近の研究の動向

(5) 膜技術を基盤にした新しい水処理と海水淡水化の省エネルギー化

国立環境研究所 花崎 直太 39-4 (2018) 33 栗原 優 39-4 (2018) 37 東レ

水向健太郎

弘 竹内

(6) Energy for Peace:ミャンマーにおける水力ダム開発 東京大学 山口 健介 39-4 (2018) 42

芳川 恒志

University of California ノアキットナー

「娃」	集] 火力発電の最新動向と今後の展望					
(1)	*/ スク先竜の最新動向 火力発電の最新動向	電力中央研究所	幸田	栄一	39-5 (2018)	19
(2)	発電用ガスタービン技術の変遷と将来展望	三菱日立パワーシステムズ	羽田	哲	39-5 (2018)	23
(3)	川崎重工における水素焚きガスタービンの開発状況	川崎重工業	堀川	敦史	39-5 (2018)	
(0)	川崎主工に8317の小泉及とガステービンの開発状況	/// // // // // // // // // // // // //	足利	五百	00 0 (2010)	21
		"	山口	正人		
		"	堂浦	康司		
(4)	火力発電におけるアンモニア混焼技術の開発	" IHI		^{承 可} 真太朗	20 E (2010)	21
(4)	火力光电におけるアンモーアル州技術の用光				39-5 (2018)	31
(E)	ガスケービンスの京児耐麻抵性中間 MCO ごっせ作	一	石原	咲子 蚕士	20 E (0010)	0.0
(5)	ガスタービンへの高温耐摩耗性皮膜: MSCoating技術	三菱電機	井島	喬志	39–5 (2018)	36
(0)	*** - * * ** ** ** ** ** ** ** ** ** **	// \	湯澤	隆	00 5 (0040)	40
(6)	ガスエンジンの最新動向	ヤンマー	中園	徹	39-5 (2018)	40
	集 <i>]液体から固体へと進化する電気化学エネルギーデバ</i> ィ		, le	—	00 0 (0010)	4.0
(1)	液体から固体へと進化する電気化学エネルギーデバイス	三菱電機	光田	憲朗	39-6 (2018)	13
(2)	水素社会実現に向けたパナソニックの取り組み	パナソニック	菅原	靖	39-6 (2018)	14
(3)	エネファーム用SOFCの実用化	京セラ	牟禮	辰洋	39-6 (2018)	19
		"	角田	裕次		
		II .	小野	孝		
		"	大嶋	仁英		
(4)	地球温暖化問題と固体酸化物形燃料電池(SOFC)	産業技術総合研究所	嘉藤	徹	39–6 (2018)	23
(5)	全固体リチウム電池の進展	大阪府立大学	林	晃敏	39-6 (2018)	28
		"	作田	敦		
		"	辰巳碣	少昌弘		
(6)	油入り高圧進相コンデンサ	九州指月	福山	晋	39-6 (2018)	33
		指月電機製作所	前畑	安志		
(7)	チップ積層セラミックコンデンサの技術動向	村田製作所	仲山	吉洋	39-6 (2018)	37
[特]	集] 鉄道とエネルギー					
(1)	鉄道とエネルギー(総論)	東京大学	横山	明彦	40-1 (2019)	33
(2)	鉄道輸送を支える電力ネットワーク	東日本旅客鉄道	久保	公人	40-1 (2019)	37
(3)	東海道新幹線車両の技術開発と省エネルギー	東海旅客鉄道	佐藤	賢司	40-1 (2019)	42
(4)	鉄道エネルギーソリューションと省エネ鉄道システム	東芝インフラシステムズ	小泉	善裕	40-1 (2019)	47
(5)	駅舎補助電源装置(S-EIV)	三菱電機	藤田	敬喜	40-1 (2019)	52
(6)	蓄電池応用駆動システムの開発と展望	日立製作所	永浦	康弘	40-1 (2019)	57
		II.	吉田	努		
		九州旅客鉄道	畑中	宏文		
		JR九州エンジニアリング	池田	弥郁		
		東日本旅客鉄道	有賀	洋三		
(7)	列車運行の消費電力を予測するシミュレータの開発	鉄道総合技術研究所	池田	充	40-1 (2019)	62
		"	武内	陽子		
		"	小川	知行		
		"		大観		
「特』	集]植物工場の進化と将来展望					
(1)	スエ光型を中心とした植物工場の現状と今後の展開の可	· :能性 大阪府立大学	増田	昇	40-2 (2019)	14
(2)	LED光照射による植物の成長と形態の制御	電力中央研究所	地子	智浩	40-2 (2019)	20
(3)	植物工場での薬用植物生産	千葉大学	彦坂	晶子	40-2 (2019)	25
(4)	農業における IoT / AI の活用と植物工場の将来性	産業技術総合研究所	谷川	民生	40-2 (2019)	30
(5)	食品廃棄物の低減に貢献する人工光型植物工場を目指し		八谷	佳明	40-2 (2019)	35
(6)	赤色青色LED交互照射(S法)による高速栽培とコストダウ		鈴木	廣志	40-2 (2019)	40
(0)	がしょいにロスユ m/が (OA/16のの同体税和Cコペドング	- 刈木 旧和电工	当 こくしん	戌心	70 Z (ZUI3)	-1 0

題

目

特質循環とエネルギー有効利用を目指した植物生産システム 大阪府立大学 地震 機関		題目	所	属	執筆	逢者	Vol.−No. (発行年)	頁
「	(7)	物質循環とエネルギー有効利用を目指した植物生産システム	大阪府立	大学	北宇	善昭	40-2 (2019)	45
(1) 地球温暖するOCS技術と今後の展型 (1) 地球温暖に対策におけるCCSへの期待と取り巻く状況 総済産業名 同島 和 40-3 (2019) 19 (2) CO、排出削減に同けた対策の開発の動向 新エネルギー・産業技術総合開発機構				"	遠藤	良輔		
(1) 地球温暖化対策におけるCCSへの期待と取り巻く状況 経済産業名 問島				"	大山	克己		
22 CO.排出削減に向けた研究開発の動向 地球環境産業技術研究機構 新川 佐 40-3 (2019) 79 74 74 74 74 74 74 74	[特]	集]進展するCCS技術と今後の展望						
3 CO.地中貯留技術開発の動向 地球環境産業技術研究機構	(1)	地球温暖化対策におけるCCSへの期待と取り巻く状況	経済産	E業省	岡島	拓郎	40-3 (2019)	13
日本COS調査 日中 日本 日本 日本 日本 日本 日本 日本	(2)	CO2 排出削減に向けた研究開発の動向 新エネルギー・j	産業技術総合開発	Ě機構	布川	信	40-3 (2019)	19
(6) 化学吸収法によるCO.分離・回収技術の開発状況 関西電力 中神 保秀 40-3 (2019) 38 (6) 海外におけるCCSプロジェクトの動向 グローバルCCSインスティテュート 南坊 博司 40-3 (2019) 38 (7) CO.地中貯留 (CCS)と社会受容 産業技術総合研究所 田中 教子 40-3 (2019) 43 (7) CO.地中貯留 (CCS)と社会受容 産業技術総合研究所 田中 教子 40-3 (2019) 43 (7) CO.地中貯留 (CCS)と社会受容 産業技術総合研究所 田中 教子 40-3 (2019) 43 (7) CO.地中貯留 (CCS)と社会受容 産業技術総合研究所 服部 数 40-4 (2019) 16 (2017) であった人の革命概要と取り巻く状況 ――――――――――――――――――――――――――――――――――――	(3)	CO ₂ 地中貯留技術開発の動向 地球	環境産業技術研 究	兄機構	薛	自求	40-3 (2019)	24
(6) 海外におけるCOSプロジェクトの動向 グローバルCCSインスティチュート 病坊 博司 40-3 (2019) 38	(4)	苫小牧におけるCCS大規模実証試験事業の現況について	日本CC:	S調査	田中	豊	40-3 (2019)	28
(7) CO.地中貯留 (CCS)と社会受容 度求技術総合研究所 田中 敦子 40-3 (2019) 43	(5)	化学吸収法によるCO₂分離・回収技術の開発状況	関西	電力	中神	保秀	40-3 (2019)	34
77 CO:地中貯留 (CCS)と社会受容	(6)	海外におけるCCSプロジェクトの動向 グローバル	レCCSインスティテ	ュート	南坊	博司	40-3 (2019)	38
「会力・大力・改革の概要と取り巻く状況				"	村上	泰郎		
(1) 電力システム改革の概要と取り巻く状況	(7)	CO₂地中貯留(CCS)と社会受容	産業技術総合研	ff 究所	田中	敦子	40-3 (2019)	43
(2) ベースロード市場の意義と課題	[特]	集]急速進展する日本の電力システム改革の進捗と展望						
3 連系線利用ルールの見直しと展望 日本エネルギー経済研究所 小笠原潤一 40-4 (2019) 24 容量市場の概要と展望 日本エネルギー経済研究所 小笠原潤一 40-4 (2019) 29 29 26 36 36 36 37 36 37 37 3	(1)	電力システム改革の概要と取り巻く状況	一棉	大学	山内	弘隆	40-4 (2019)	16
64 容量市場の概要と展望 日本エネルギー経済研究所 水笠原和 水笠 水笠 水笠 40-4 (2019) 29 20 34 35 35 35 40 40 40 40 39 34 35 35 35 40 40 40 40 39 39 35 35 40 40 40 40 39 39 35 35 40 40 40 40 39 39 35 35 40 40 40 40 39 39 35 35 35 40 40 40 40 39 39 35 35 35 40 40 40 40 39 39 35 35 35 35 35 35	(2)	ベースロード市場の意義と課題	電力中央研	究所	服部	徹	40-4 (2019)	20
5 無給調整市場の概要と展望 日本エネルギー経済研究所 京 京 40-4 (2019) 34 36 14 40-4 (2019) 39 39 30 40-4 (2019) 39 30 30 40 40 40 40 30 30	(3)	連系線利用ルールの見直しと展望	横浜国立	大学	大山	力	40-4 (2019)	24
6 非化石価値取引市場の現状と展望 東京大学 大橋 3 40-4 (2019) 3 4 7 7 1 1 1 1 1 1 1 1	(4)	容量市場の概要と展望 日本コ	エネルギー経済研	究所	小笠原	原潤一	40-4 (2019)	29
(7) 電気料金の経過措置撤廃:概要と展望 東京大学	(5)	需給調整市場の概要と展望 日本コ	エネルギー経済研	究所	永富	悠	40-4 (2019)	34
6 再生可能エネルギー大量導入時代の電力市場の課題と展望 東京大学	(6)	非化石価値取引市場の現状と展望	電力中央研	究所	朝野	賢司	40-4 (2019)	39
	(7)	電気料金の経過措置撤廃:概要と展望	東京	大学	大橋	弘	40-4 (2019)	44
(1) 建築物の省エネルギー施策(総括) 国土交通省 高梨 潤 40-5 (2019) 10 接済産業者 粟津 浩介	(8)	再生可能エネルギー大量導入時代の電力市場の課題と展望	東京	大学	荻本	和彦	40-4 (2019)	49
接換物のエネルギー消費性能の向上に関する法律の一部を改正する法律について 国土交通省 高架 周 40-5 (2019) 15	[特]	集]建築物(非住宅)の省エネルギー施策と最新の技術動向						
(2) 建築物のエネルギー消費性能の向上に関する法律の一部を改正する法律について 国土交通省 高梨 周 40-5 (2019) 15 (3) ZEB普及に向けた国内外の動向 ベターリビング 新倉 隆宏 40-5 (2019) 19 (4) BELS(建築物省エネルギー性能表示制度)の概要について 住宅性能評価・表示協会 宇治田裕子 40-5 (2019) 23 (5) 建築物の総合環境性能評価システム「CASBEE」 建築環境・省エネルギー機構 早津 隆史 40-5 (2019) 27 (6) 外皮性能の向上と自然エネルギーの利用 東京大学 清家 剛 40-5 (2019) 31 (7) ヒューマンファクターを考慮した空調システムの省エネ・快適性技術 立命館大学 近本 智行 40-5 (2019) 36 (8) LED × 照明制御× 照明ソフトによる照明システムの省エネルギー パナソニック 岩井 彌 40-5 (2019) 31 (7) と正・マンファクターを考慮した空調システムの省エネルギー パナソニック 岩井 彌 40-5 (2019) 31 (8) LED × 照明制御× 照明ソフトによる照明システムの省エネルギー パナソニック 岩井 彌 40-5 (2019) 31 (7) 上手集】日本のエネルギー関連技術イバーション戦略(その1) 11 (3) 次間(気候の) 第1 (4) 大学 大学 大学 大学 大学 40-6 (2019) 12 (2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB) の取り組み 早稲田大学 石井 英雄 40-6 (2019) 12 (2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB) の取り組み 早稲田大学 石井 英雄 40-6 (2019) 12 (2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB) の取り組み 早稲田大学 石井 英雄 40-6 (2019) 12 (2) 日本型オーブンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 22 (4) 日本型オーブンイクペーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 33 (2) 日本型オーブンイクルベーションによる次世代パワーエレクトロニクス技術開発 東生 41-1 (2020) 15 (2) 区の場を検集・エネルギー・資源の未来展望(随想) サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCU一脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 15 (2) CCSとCCU一脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 (4) 41-1 (2020) 20 ((1)	建築物の省エネルギー施策(総括)	国土交	逐通省	高梨	潤	40-5 (2019)	10
国土交通省 高製 潤 40-5 (2019) 15 (3) ZEB普及に向けた国内外の動向 ベターリビング 新倉 隆宏 40-5 (2019) 19 (4) BELS(建築物省エネルギー性能表示制度)の概要について 住宅性能評価・表示協会 宇治田谷子 40-5 (2019) 23 (5) 建築物の総合環境性能評価システム「CASBEE」 建築環境・省エネルギー機構 早津 隆史 40-5 (2019) 27 (6) 外皮性能の向上と自然エネルギーの利用 東京大学 清家 剛 40-5 (2019) 31 (7) ヒューマンファクターを考慮した空調システムの省エネ・快適性技術 立命館大学 近本 智行 40-5 (2019) 31 (8) LED × 照明制御外 照明ソフトによる照明システムの省エネルギー パナソニック 岩井 彌 40-5 (2019) 31 (7) とエーマンファクターを考慮した空調システムの省エネルギー パナソニック 岩井 彌 40-5 (2019) 31 (7) とエーマンファクターを考慮した空調システムの省エネルギー パナソニック 岩井 彌 40-6 (2019) 41 (7) 表別の調和:協創的競争の場を創るために 青山学院大学 菊池 純ー 40-6 (2019) 12 (2) エネルギー・リンース・アグリゲーション・ビジネス(ERAB)の取り組み 早稲田大学 石井 英雄 40-6 (2019) 17 (3) 次世代技術を活用した新たな電カブラットフォーム 大阪大学 西村 陽 40-6 (2019) 22 (4) 日本型オーブンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (3) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 33 (5) 不マートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 31 (2) 第重立の周年記念特集]エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) COSとCCU一脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 15 (2) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題一 東京大学 有馬 純 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題一			経済産	業省	粟津	浩介		
3 ZEB普及に向けた国内外の動向	(2)	建築物のエネルギー消費性能の向上に関する法律の一部を改立	正する法律につ	いて				
(4) BELS(建築物省エネルギー性能表示制度)の概要について			国土交	逐通省	高梨	潤	40-5 (2019)	15
住宅性能評価・表示協会 字治世子 40-5 (2019) 23 (5) 建築物の総合環境性能評価システム「CASBEE」 建築環境・省エネルギー機構 早津 隆史 40-5 (2019) 27 (6) 外皮性能の向上と自然エネルギーの利用 東京大学 清家 剛 40-5 (2019) 31 (7) ヒューマンファクターを考慮した空調システムの省エネ・快適性技術 立命館大学 近本 智行 40-5 (2019) 36 (8) LED×照明制御×照明ソフトによる照明システムの省エネルギー パナソニック 岩井 彌 40-5 (2019) 41 【持集】日本のエネルギー関連技術イノベーション戦略(その1) (1) STI(Science, Technology and Innovation) 構想とSTS(Science, Technology and Sustainability 構想の調和: 協創的競争の場を創るために 青山学院大学 菊池 純一 40-6 (2019) 12 (2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB)の取り組み 早稲田大学 石井 英雄 40-6 (2019) 17 (3) 次世代技術を活用した新たな電カプラットフォーム 大阪大学 西村 陽 40-6 (2019) 22 (4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 38 (6) 再生可能エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サスティナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCU一脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 -成果と今後の課題 東京大学 有馬 4 41-1 (2020) 20 (4) 国連気候変動交渉 -成果と今後の課題 東京大学 有馬 4 41-1 (2020) 20 (4) 国連気候変動交渉 -成果と今後の課題 東京大学 有馬 4 41-1 (2020) 20 (4) (4) 国連気候変動交渉 -成果と今後の課題 東京大学 有馬 4 41-1 (2020) 20 (4) (4) 国連気候変動交渉 -成果と今後の課題 東京大学 有馬 4 41-1 (2020) 20 (4) (4) 国連気候変動交渉 -成果と今後の課題 東京大学 有馬 4 41-1 (2020) 20 (4) (4) 国連気候変動交渉 -成果と今後の課題 東京大学 有馬 4 41-1 (2020) 20 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	(3)		ベターリヒ	゛ング	新倉	隆宏	40-5 (2019)	19
接いの総合環境性能評価システム「CASBEE」 建築環境・省エネルギー機構 早津 隆史 40-5 (2019) 27 (6) 外皮性能の向上と自然エネルギーの利用 東京大学 清家 剛 40-5 (2019) 31 (7) ヒューマンファクターを考慮した空調システムの省エネ・快適性技術 立命館大学 近本 智行 40-5 (2019) 36 (8) LED×照明制御×照明ソフトによる照明システムの省エネルギー パナソニック 岩井 彌 40-5 (2019) 41 [持集]日本のエネルギー関連技術イノベーション戦略(その1) (1) STI(Science, Technology and Innovation) 構想とSTS(Science, Technology and Sustainability) 構想の調和:協創的競争の場を創るために 青山学院大学 菊池 純一 40-6 (2019) 12 (2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB)の取り組み 早稲田大学 石井 英雄 40-6 (2019) 17 (3) 次世代技術を活用した新たな電カプラットフォーム 大阪大学 西村 陽 40-6 (2019) 22 (4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 33 (6) 再生可能エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCUー脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 -成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4)	(4)	BELS(建築物省エネルギー性能表示制度)の概要について						
(6) 外皮性能の向上と自然エネルギーの利用 東京大学 清家 剛 40-5 (2019) 31 (7) ヒューマンファクターを考慮した空調システムの省エネ・快適性技術 立命館大学 近本 智行 40-5 (2019) 36 (8) LED×照明制御×照明ソフトによる照明システムの省エネルギー パナソニック 岩井 彌 40-5 (2019) 41 [持集] 日本のエネルギー関連技術イノベーション戦略(その1) (1) STI(Science, Technology and Innovation) 構想とSTS(Science, Technology and Sustainability 構想の調和: 協創的競争の場を創るために 青山学院大学 菊池 純一 40-6 (2019) 12 (2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB)の取り組み 早稲田大学 石井 英雄 40-6 (2019) 17 (3) 次世代技術を活用した新たな電カプラットフォーム 大阪大学 西村 陽 40-6 (2019) 22 (4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 33 (6) 再生可能エネルギーの貯蔵・輸送のための水素技術 産業技術総合研究所 坂市 校也 40-6 (2019) 38 (2) (2) (2) (3) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCUー脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4) (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4) (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 20 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)		住雪	宅性能評価・表示	協会	宇治日	日裕子	40-5 (2019)	23
(7) ヒューマンファクターを考慮した空調システムの省エネ・快適性技術 立命館大学 近本 智行 40-5 (2019) 36 (8) LED×照明制御×照明ソフトによる照明システムの省エネルギー パナソニック 岩井 彌 40-5 (2019) 41 [特集] 日本のエネルギー関連技術イノベーション戦略(その1) (1) STI(Science, Technology and Innovation) 構想とSTS (Science, Technology and Sustainability) 構想の調和: 協創的競争の場を創るために 青山学院大学 菊池 純一 40-6 (2019) 12 (2) エネルギー・リソース・アグリゲーション・ビジネス (ERAB)の取り組み 早稲田大学 石井 英雄 40-6 (2019) 17 (3) 次世代技術を活用した新たな電力プラットフォーム 大阪大学 西村 陽 40-6 (2019) 22 (4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 33 (6) 再生可能エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCUー脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 一成果と今後の課題ー 東京大学 有馬 純 41-1 (2020) 20 (4)	(5)	建築物の総合環境性能評価システム「CASBEE」 建築環境	竟・省エネルギ−	-機構	早津	隆史	40-5 (2019)	27
(8) LED×照明制御×照明ソフトによる照明システムの省エネルギー パナソニック 岩井 彌 40-5 (2019) 41 【特集】日本のエネルギー関連技術イノベーション戦略(その1) (1) STI(Science, Technology and Innovation) 構想とSTS(Science, Technology and Sustainability) 構想の調和: 協創的競争の場を創るために 青山学院大学 菊池 純一 40-6 (2019) 12 (2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB)の取り組み 早稲田大学 石井 英雄 40-6 (2019) 17 (3) 次世代技術を活用した新たな電カプラットフォーム 大阪大学 西村 陽 40-6 (2019) 22 (4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 33 (6) 再生可能エネルギーの貯蔵・輸送のための水素技術 産業技術総合研究所 坂西 欣也 40-6 (2019) 38 【創立40周年記念特集】エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCUー脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 一成果と今後の課題ー 東京大学 有馬 純 41-1 (2020) 22	(6)			大学	清家	剛		31
[特集] 日本のエネルギー関連技術イノベーション戦略(その1)(1) STI(Science, Technology and Innovation) 構想とSTS(Science, Technology and Sustainability)オー・ 40-6 (2019)12(2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB)の取り組み 早稲田大学 石井 英雄 40-6 (2019)17(3) 次世代技術を活用した新たな電力プラットフォーム 大阪大学 西村 陽 40-6 (2019)22(4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発産業技術総合研究所 奥村 元 40-6 (2019)27(5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019)33(6) 再生可能エネルギーの貯蔵・輸送のための水素技術 産業技術総合研究所 坂西 欣也 40-6 (2019)38【創立40周年記念特集】エネルギー・資源の未来展望(随想)(1) 都市鉱山金属リサイクルが拓く持続可能な社会づくりサステイナビリティ技術設計機構 原田 幸明 41-1 (2020)15(2) CCSとCCU一脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020)18(3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020)20(4) 国連気候変動交渉ー成果と今後の課題ー 東京大学 有馬 純 41-1 (2020)20				大学	近本	智行		
(1) STI(Science, Technology and Innovation) 構想とSTS(Science, Technology and Sustainability 構想の調和: 協創的競争の場を創るために 青山学院大学 菊池 純一 40-6 (2019) 12 (2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB)の取り組み 早稲田大学 石井 英雄 40-6 (2019) 17 (3) 次世代技術を活用した新たな電カプラットフォーム 大阪大学 西村 陽 40-6 (2019) 22 (4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 33 (6) 再生可能エネルギーの貯蔵・輸送のための水素技術 産業技術総合研究所 坂西 欣也 40-6 (2019) 38 「創立40周年記念特集]エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCU一脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 - 成果と今後の課題 東京大学 有馬 純 41-1 (2020) 22			- パナソニ	ニック	岩井	彌	40-5 (2019)	41
構想の調和:協創的競争の場を創るために 青山学院大学 菊池 純一 40-6 (2019) 12 (2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB)の取り組み 早稲田大学 石井 英雄 40-6 (2019) 17 (3) 次世代技術を活用した新たな電力プラットフォーム 大阪大学 西村 陽 40-6 (2019) 22 (4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 33 (6) 再生可能エネルギーの貯蔵・輸送のための水素技術 産業技術総合研究所 坂西 欣也 40-6 (2019) 38 「創立40周年記念特集]エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 辛明 41-1 (2020) 15 (2) CCSとCCU一脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 一成果と今後の課題ー 東京大学 有馬 純 41-1 (2020) 22								
(2) エネルギー・リソース・アグリゲーション・ビジネス(ERAB)の取り組み 早稲田大学 石井 英雄 40-6 (2019) 17 (3) 次世代技術を活用した新たな電力プラットフォーム 大阪大学 西村 陽 40-6 (2019) 22 (4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 33 (6) 再生可能エネルギーの貯蔵・輸送のための水素技術 産業技術総合研究所 坂西 欣也 40-6 (2019) 38 [創立40周年記念特集] エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCUー脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 ー成果と今後の課題ー 東京大学 有馬 純 41-1 (2020) 22	(1)	=-			_			
(3) 次世代技術を活用した新たな電カプラットフォーム 大阪大学 西村 陽 40-6 (2019) 22 (4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 33 (6) 再生可能エネルギーの貯蔵・輸送のための水素技術 産業技術総合研究所 坂西 欣也 40-6 (2019) 38 [創立40周年記念特集]エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCU一脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉ー成果と今後の課題ー 東京大学 有馬 純 41-1 (2020) 22								
(4) 日本型オープンイノベーションによる次世代パワーエレクトロニクス技術開発 産業技術総合研究所 奥村 元 40-6 (2019) 27 (5) スマートモビリティの動向に関する一考察 横浜国立大学 中村 文彦 40-6 (2019) 33 (6) 再生可能エネルギーの貯蔵・輸送のための水素技術 産業技術総合研究所 坂西 欣也 40-6 (2019) 38 「創立40周年記念特集]エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCUー脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 一成果と今後の課題一 東京大学 有馬 純 41-1 (2020) 22						英雄		17
産業技術総合研究所奥村元40-6 (2019)27(5) スマートモビリティの動向に関する一考察横浜国立大学中村文彦40-6 (2019)33(6) 再生可能エネルギーの貯蔵・輸送のための水素技術産業技術総合研究所坂西欣也40-6 (2019)38【創立40周年記念特集】エネルギー・資源の未来展望(随想)(1) 都市鉱山金属リサイクルが拓く持続可能な社会づくりサステイナビリティ技術設計機構原田幸明41-1 (2020)15(2) CCSとCCU一脱炭素社会を目指すために九州大学赤井誠41-1 (2020)18(3) 資源情勢と資源経済学秋田大学安達毅41-1 (2020)20(4) 国連気候変動交渉ー成果と今後の課題ー東京大学有馬純41-1 (2020)22				大学	西村	陽	40-6 (2019)	22
(5)スマートモビリティの動向に関する一考察横浜国立大学中村文彦40-6 (2019)33(6)再生可能エネルギーの貯蔵・輸送のための水素技術産業技術総合研究所坂西欣也40-6 (2019)38【創立40周年記念特集】エネルギー・資源の未来展望(随想)サステイナビリティ技術設計機構原田幸明41-1 (2020)15(2)CCSとCCU一脱炭素社会を目指すために九州大学赤井誠41-1 (2020)18(3)資源情勢と資源経済学秋田大学安達毅41-1 (2020)20(4)国連気候変動交渉 -成果と今後の課題-東京大学有馬純41-1 (2020)22	(4)	日本型オープンイノベーションによる次世代パワーエレクトロニク	ス技術開発					
(6) 再生可能エネルギーの貯蔵・輸送のための水素技術産業技術総合研究所 坂西 欣也 40-6 (2019) 38[創立40周年記念特集]エネルギー・資源の未来展望(随想)(1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくりサステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15(2) CCSとCCU一脱炭素社会を目指すために九州大学 赤井 誠 41-1 (2020) 18(3) 資源情勢と資源経済学秋田大学 安達 毅 41-1 (2020) 20(4) 国連気候変動交渉 一成果と今後の課題一東京大学 有馬 純 41-1 (2020) 22						元		27
[創立40周年記念特集]エネルギー・資源の未来展望(随想) (1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくり サステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15 (2) CCSとCCU一脱炭素社会を目指すために 九州大学 赤井 誠 41-1 (2020) 18 (3) 資源情勢と資源経済学 秋田大学 安達 毅 41-1 (2020) 20 (4) 国連気候変動交渉 -成果と今後の課題- 東京大学 有馬 純 41-1 (2020) 22	(5)				中村	文彦		33
(1) 都市鉱山 金属リサイクルが拓く持続可能な社会づくりサステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15(2) CCSとCCU一脱炭素社会を目指すために九州大学 赤井 誠 41-1 (2020) 18(3) 資源情勢と資源経済学秋田大学 安達 毅 41-1 (2020) 20(4) 国連気候変動交渉 一成果と今後の課題ー東京大学 有馬 純 41-1 (2020) 22			産業技術総合研	T究所	坂西	欣也	40-6 (2019)	38
(2) CCSとCCUー脱炭素社会を目指すためにサステイナビリティ技術設計機構 原田 幸明 41-1 (2020) 15(2) 放けために九州大学 赤井 誠 41-1 (2020) 18(3) 資源情勢と資源経済学秋田大学 安達 毅 41-1 (2020) 20(4) 国連気候変動交渉 -成果と今後の課題-東京大学 有馬 純 41-1 (2020) 22								
(2)CCSとCCU-脱炭素社会を目指すために九州大学赤井誠41-1 (2020)18(3)資源情勢と資源経済学秋田大学安達毅41-1 (2020)20(4)国連気候変動交渉 -成果と今後の課題-東京大学有馬純41-1 (2020)22	(1)							
(3) 資源情勢と資源経済学秋田大学 安達 毅 41-1 (2020) 20(4) 国連気候変動交渉 -成果と今後の課題-東京大学 有馬 純 41-1 (2020) 22						幸明		15
(4) 国連気候変動交渉 一成果と今後の課題一 東京大学 有馬 純 41-1(2020) 22			九州	大学	赤井			18
			秋日	大学				20
(5) 全国の自治体における持続可能な開発目標(SDGs)の取り組み 法政大学 川久保 俊 41-1(2020) 24				大学				22
	(5)	全国の自治体における持続可能な開発目標(SDGs)の取り組み	· 法政	大学	川久傳	录 俊	41-1 (2020)	24

	題目	所	属	執筆	奎者	VolNo. (発行年)	頁 ——
(6)	石油危機に遭遇し、我が人生は太陽光発電へ	東京農工	大学	黒川	浩助	41-1 (2020)	26
(7)	水素を利用する地産地消エネルギーシステム		大学	河野	龍興	41-1 (2020)	28
(8)	熱エネルギー雑感	電力中央研		齋川	路之	41-1 (2020)	30
(9)		モハヤスり ネルギー経済研		柴田	善朗	41-1 (2020)	32
(10)		かり (根がり) 竹中エ		下	正純	41-1 (2020)	34
,	エネルギー関連の学術の展望		大学	' 下田	吉之	41-1 (2020)	36
	「金融3原則」が拓くサステナブルファイナンスの時代	J < 192	. , ,	, 144	ц с	41 1 (2020)	00
(12)	国連環境計画・金	会融イニシアテ	・ィブ	末吉乍	九二郎	41-1 (2020)	38
(13)	エネルギー技術イノベーションと科学的エビデンス		大学	杉山		41-1 (2020)	40
(14)	エネルギーと資源に係わるSocial Equityの重要性	九州	大学		w John napman	41-1 (2020)	42
(15)	エネルギー・資源・環境システムの複合領域研究再考	京都	大学	手塚	哲央	41-1 (2020)	44
	非化石燃料の燃焼が支える未来社会		大学	中塚	記章	41-1 (2020)	46
, ,			"	赤松	史光		
(17)	地球上の貴重な資源	関西	電力	花田	敏城	41-1 (2020)	48
	狭すぎる空間で暮らしていく人間へ 一産業連関分析の視点から一	· 慶應義塾	大学	早見	均	41-1 (2020)	50
	化学工学におけるSDGs達成への取り組み 一効率性から充足性へ		大学	平尾	雅彦	41-1 (2020)	52
(20)	家庭用燃料電池の商品化と将来展望		大学	本田	國昭	41-1 (2020)	54
(21)	エネルギー・資源におけるバイオマスとしての食品からの考察	帝塚山学院		宮武	和孝	41-1 (2020)	56
		エパワーシステ		山内	康弘	41-1 (2020)	58
	集]日本のエネルギー関連技術イノベーション戦略(その2)						
(1)	イノベーション志向プロジェクトとマネジメントのあり方	東京工業	大学	岡崎	健	41-2 (2020)	8
(2)	自動車における内燃機関の高効率化とその役割に関する将来展覧			大聖	泰弘	41-2 (2020)	12
(3)		- 宙航空研究開発		牧野	克省	41-2 (2020)	18
(-,			"	相馬多		(,	
(4)	砂層型メタンハイドレート資源開発のR&D 石油天然ガス・	- 金属鉱物資源	機構	山本	晃司	41-2 (2020)	23
(' /		金業技術総合研 全業技術総合研		天満	則夫	(2020)	
		ンハイドレート		阿部	正憲		
(5)		跌道総合技術研		富田	優	41-2 (2020)	28
(6)	終章:これからの科学技術・イノベーション政策にむけて	科学技術振興			俊介	41-2 (2020)	
[特]	集]人工光合成研究の最前線						
(1)	人工光合成とは	東京理科	大学	工藤	昭彦	41-3 (2020)	12
(2)	産業界からみた"人工光合成"	三菱ケミ			山亨	41-3 (2020)	15
(3)	大規模展開にむけた水の光分解の高活性光触媒	東京	大学	山田	太郎	41-3 (2020)	20
			"	堂免	一成		
(4)	可視光水分解のための光触媒材料開発	京都	大学	鈴木	肇	41-3 (2020)	25
			"	阿部	竜		
(5)	分子性錯体触媒を修飾したTiO2電極による水の完全分解	九州	大学	小澤	弘宜	41-3 (2020)	30
, ,	• • • • • • • • • • • • • • • • • • • •		"	酒井	健		
(6)	酸化イリジウムのナノ構造制御による酸素発生アノード触媒の開発	新 湯	大学	坪ノロ	内優太	41-3 (2020)	36
, ,			"	江尾	達矢	, ,	
			"	八木	政行		
(7)	粉末半導体光触媒および光電極系による水を電子源とした	東京理科	大学	吉野	隼矢	41-3 (2020)	43
. ,	CO ₂ 還元		"	工藤	昭彦	, ,	-
(8)	人工光合成による水素と有用化学品製造 一酸化物光触媒 歴	産業技術総合 研	究所	佐山	和弘	41-3 (2020)	49
	および光電極を用いたPower-to-X'の実現へー						
[特]	集]デジタル時代の建築分野における環境設計						
(1)	デジタル時代の建築分野における環境設計	日建	設計	安井	謙介	41-4 (2020)	17

	題 目	所	属	執筆	奎者	VolNo. (発行年)	頁 ——
(2)	BIMによるMORE LESS BETTERの実現	オート	デスク	菱田	哲也	41-4 (2020)	22
(2)	Dimited dimone Lead Better (0)	., .	, , , ,	羽山	拓也	11 1 (2020)	
(3)	BIM時代のPassive House設計手法について 杉浦洋平頭	建築設計		杉浦	洋平	41-4 (2020)	27
(4)	建築デザインのための環境シミュレーション、その現状と課題 -BIMと				,, ,	11 1 (2020)	-,
(. ,			/ 治大学	川島	範久	41-4 (2020)	34
(5)	3Dプリンター技術の大型構造物への展開		大林組	金子	智弥	41-4 (2020)	42
(6)	IoTセンサを用いた家庭内計測とデータ活用事例	②力中央	研究所	服部	俊一	41-4 (2020)	47
[特]	集]洋上風力発電の最前線						
(1)	洋上風力発電への期待と課題	足	利大学	牛山	泉	41-5 (2020)	16
(2)	NEDOの取組みと洋上風力発電の展望 新エネルギー・産業技術	5総合開	発機構	佐々ス	卞 淳	41-5 (2020)	21
			"	加藤	茉里		
(3)	日本における持続可能な洋上風力発電の開発 MHI Vestas	Offshor	e Wind	山田	正人	41-5 (2020)	26
(4)	浮体式洋上風力向けダイナミックケーブルの開発	住友電	気工業	鈴木	孝幸	41-5 (2020)	31
			"	阿部	和俊		
(5)	大型洋上風車建設に対応する自航式SEP船		水建設	白枝	哲次	41-5 (2020)	36
(6)		技術総合	研究所	川端	浩和	41-5 (2020)	41
(7)	洋上風力のためのリアルタイム気象・海象予測システム						
F 4.4	伊藤忠テクノソリ	リューシ	ョンズ	吉田	健二	41-5 (2020)	46
	集]カーボンリサイクルの最新動向	/ 1 2 1-1-	ᅲᄱᄔᄼ	. –	1-4	44 0 (0000)	4.0
(1)	カーボンリサイクル政策の現状と今後の方向性		産業省	土屋	博史	41-6 (2020)	13
(2)	CO ₂ の電気分解によるカーボンリサイクル	東京工		加藤	之貴	41-6 (2020)	18
(3)	二酸化炭素から有用化学品を製造する触媒技術開発産業績	支術総合	ᄺᅓᇎ	髙須 深谷	大輝 訓久	41-6 (2020)	23
(3)	一敗に灰糸が9月月に子面を袋迫する歴殊技術開光 産業が	又州形口	ᄱ	藤谷	忠博	41-0 (2020)	23
			"	催	^{本哲}		
(4)	再生可能エネルギーによるCO ₂ からのメタン製造技術	В	立诰船	泉屋	宏一	41-6 (2020)	28
(. /		_	~	高野	裕之	0 (2020)	
			"	四宮	博之		
			"	熊谷	直和		
(5)	コンクリートの炭酸化によるCCU『CO2 -SUICOM』	鹿	島建設	取違	剛	41-6 (2020)	33
(6)	ネガティブエミッション技術 エネルギー糸	8合工学	研究所	加藤	悦史	41-6 (2020)	38
(7)	三川発電所(バイオマス)における環境配慮型CCS実証事業						
	東芝エネルキ	デーシス	テムズ	斎藤	聡	41-6 (2020)	42
[特]	集]産業電化が拓く省エネ・低炭素社会						
(1)	"産業電化"による省エネ・脱炭素イノベーションの実現						
	日本エレクトロヒ			内山	洋司	42-1 (2021)	25
(2)	産業用ヒートポンプの普及と将来動向		屋大学	渡邉	澂雄 -	42-1 (2021)	30
(3)	赤外加熱技術の最新動向		院大学			42-1 (2021)	35
(4)	高圧ボンベ製造工程の電化への取り組み		西電力			42-1 (2021)	40
	글		イチク ボンベ		勇士切		
(5)	"熱のリサイクル"を応用した排水濃縮・減容工程での省エネ革新	5. 上 昭 和	ホンヘ	伊達的	E 人即		
(3)			ンター	坂口	勝俊	42-1 (2021)	45
	ログエレクドロに		ファー サクラ	井上		TL 1 (2021)	70
(6)	塗装乾燥熱源への赤外線加熱導入による生産性およびエネルギー効<		, , ,	<i>/</i> 1 /	HT		
(0)	全表も深水源でのが下線加水等へによる工産性のよびエイルイ 効- 日本エレクトロヒ		ンター	坂口	勝俊	42-1 (2021)	50
(7)		- · - 3力中央			法志広	42-1 (2021)	55
\'/	たい。 できた は で 悪 こ () () () いっしょう () () () () () () ()					(2021)	

(16) 脱炭素化へ向けた電気自動車の貢献

					(元11十)	
<i>[</i> <u>#</u> ≠ #	§]脱炭素への道をつなぐ天然ガスの新規・高度利用					
L <i>行列</i> (1)	<i>■J.M.灰素への追をつなく大烈カスの新規* 高度利用</i> - 天然ガスおよび都市ガス事業を取り巻く状況と2050年カ-	-ボンニュートラルに向けて期	待され	る役割		
,		経済産業省	下堀	友数	42-2 (2021)	13
		"	清水	哲也		
		<i>II</i>	向井	猛		
(2)	定置用燃料電池の技術動向と低炭素・脱炭素への貢献	産業技術総合研究所	水谷	安伸	42-2 (2021)	17
3)	高効率発電と低消費エネルギーCO2回収を実現する燃料	ト電池 東京ガス	波多流	工 徹	42-2 (2021)	21
4)	再エネ調整力としてのコージェネレーションの活用	東京大学	小宮口	山涼一	42-2 (2021)	25
5)	LNG燃料船の導入状況およびLNGバンカリングの動向	商船三井	青山	憲之	42-2 (2021)	30
		"	遠藤	尚		
3)	産業用熱源における天然ガスへの大規模燃料転換	Daigasエナジー	山本	裕介	42-2 (2021)	34
7)	メタンの熱分解による水素製造技術の開発	産業技術総合研究所	高木	英行	42-2 (2021)	38
		II .	斉田	愛子		
#± €	<i>賃]2050年のエネルギー需給</i>	"	倉本	浩司		
	₹ <i>J2030年のエネルギー無幅</i> 特集2050年のエネルギー需給 総論	古古十学	荻本	和本	42-3 (2021)	0
1) ′重:	特集2050年のエイルヤー帯桁 総調 給・循環・制度>	東京大学	狄平	和彦	42 ⁻ 3 (2021)	8
、而; 2)	^{内・加・ス・} 一根・一根を 我が国の脱炭素社会検討における社会経済シナリオ	国立環境研究所	日比劉	予 剛	42-3 (2021)	12
۷)		国立環境研究所 ほりサーチ&テクノロジーズ	平山	智樹	42-3 (2021)	12
3)	日本の長期気候政策の複数モデルによる評価	東京大学	杉山	音倒 昌広	42-3 (2021)	14
3) 4)	日本の長期ストルスの後数モナルによる計画 日本の長期CO。削減とネガティブエミッションの役割	ステスター エネルギー総合工学研究所	黒沢	厚志	42-3 (2021)	16
1)	日本の反列OO2FillMCイバルディンエーノンコンの反合	エイルイー心ロエチ切えり	加藤	序心 悦史	42-3 (2021)	10
i)	電力部門の脱炭素化に向けて	… 日本エネルギー経済研究所	松尾	雄司	42-3 (2021)	18
,	电对前 197. 从次来 (自己同) 7 (東京大学	荻本	和彦	42 0 (2021)	10
)	ニューノーマルによる脱炭素型まちづくりとは? ~次世代		354.1	14.2		
•		茨城大学	吉田才	支紀子	42-3 (2021)	20
		国立環境研究所		第二郎	3 (_3,	
7)	気候変動, 持続可能性と将来社会展望	埼玉大学	外岡	豊	42-3 (2021)	22
)	ネット・ゼロ:欧米の取り組みからの示唆	東京大学	杉山	昌広	42-3 (2021)	24
		NewClimate Institute	倉持	壮	, ,	
		東京大学				
資:	源・供給・ネットワーク>					
)	気象データと太陽光発電データセットの構築	東京大学	隈	健一	42-3 (2021)	26
		産業技術総合研究所	大竹			
0)	太陽光及び風力発電の将来ポテンシャル	産業技術総合研究所	大関	崇	42-3 (2021)	28
		"	嶋田	進		
1)	2050年に向けた再生可能炭素源としてのバイオマス	広島大学	松村	幸彦	42-3 (2021)	30
2)	原子力発電の未来をマーケティングする ~経済価値の名	見点から~				
		日本エネルギー経済研究所	柴田	智文	42-3 (2021)	32
		"	村上	朋子		
		"	木村	謙仁		
3)	脱炭素エネルギーシステムにおける水素と合成燃料の役	割				
		地球環境産業技術研究機構	秋元	圭吾	42-3 (2021)	34
		"		史典		
		"	金星	春夫		
	脱炭素化・レジリエンス強化に向けた電力ネットワーク形 要>	成の方向性東京大学			42-3 (2021)	36
	ニュース 需要側の気候変動対策としての電化とその課題	電力中央研究所	西尾	建一郎	42-3 (2021)	38

日産自動車 松本 幹雄 42-3(2021) 40

	題目	所 属	執筆	筆者	Vol.−No. (発行年)	頁 ——
(17)	民生部門の脱炭素化へ向けた課題	大阪大学	下田	吉之	42-3 (2021)	42
		"	山口	容平		
(18)	産業部門の脱炭素化へ向けた課題	三菱総合研究所	井上	裕史	42-3 (2021)	44
(19)	需要家側資源活用の可能性	東京大学	岩船	由美子	42-3 (2021)	46
[特]	集]温暖化対策と電力系統安定化に寄与する水力発電					
(1)	脱炭素社会にむけた水力発電システムの役割	早稲田大学	宮川	和芳	42-4 (2021)	15
(2)	大型水力発電システムの最新技術	日立三菱水力	谷	清人	42-4 (2021)	20
		"	田村	悠太		
(3)	大型水力発電システムの運用技術	電源開発	笠松	隼樹	42-4 (2021)	25
		"	堀川	祥吾		
(4)	· · · · = · · · · · ·	東芝エネルギーシステムズ	森	淳二	42-4 (2021)	30
(5)	再エネ大量導入下の揚水発電の運用とポテンシャル	九州電力送配電		和彦	42-4 (2021)	35
(6)	小水力・マイクロ水力発電の最新技術	信州大学		诏一郎	42-4 (2021)	40
		早稲田大学		和芳		
(7)	中小水力発電の導入促進に向けた取組み	新エネルギー財団	組橋	圭介	42-4 (2021)	46
		"	橋本	雅一		
		"	齊藤	公道		
[特3	集]アンモニア合成の新展開					
(1)	特集にあたって	三菱電機	光田	憲朗	42-5 (2021)	16
(2)	ケミカルリサイクルを用いたH.B.法によるアンモニア合成	昭和電工	栗山	常吉	42-5 (2021)	17
(3)	エレクトライドを用いたアンモニア合成触媒	東京工業大学	細野	秀雄	42-5 (2021)	20
(4)	溶融塩を用いた常圧アンモニア電解合成	アイ'エムセップ	伊藤	靖彦	42-5 (2021)	25
(5)	Ru触媒, 水素透過膜, リン酸塩電解質を用いた窒素と水かり	らのアンモニア電解合成				
		福岡大学	久保!	田 純	42-5 (2021)	30
(6)	電界印加した触媒上でのアンモニア合成法の研究	早稲田大学	関根	泰	42-5 (2021)	34
(7)	光触媒による水と窒素ガスからのアンモニア合成	大阪大学	白石	康浩	42-5 (2021)	38
		"	平井	隆之		
(8)	リチウムの機能性を利用した常圧アンモニア合成技術の研究	究 広島大学	宮岡	裕樹	42-5 (2021)	42
		"	新里	恵多		
[特]	集]エネルギー分野におけるデジタル技術活用①(供給サイト	ジ				
(1)	特集にあたって	関西電力	西	順也	42-6 (2021)	14
(2)	エネルギー分野におけるデジタル技術の活用	KPMGコンサルティング	巽	直樹	42-6 (2021)	15
(3)	火力発電所における巡視点検自動化システムの開発につい	いて 関西電力	花登	弘和	42-6 (2021)	19
		"	五十月	嵐一真		
		"	松山	瑛吾		
(4)	再生可能エネルギー発電出力の推定・予測技術	気象工学研究所	高田	望	42-6 (2021)	23
(5)	日本の電力市場におけるアルゴリズム取引の実現可能性					
	=	エネルギー経済社会研究所	松尾	豪	42-6 (2021)	28
		"	志賀	智之		
(6)	ブロックチェーン技術は再エネトラッキング、電力証書発行・	取引に有効か?				
		LO3 Energy	大串	康彦	42-6 (2021)	33
[特组	集]エネルギー分野におけるデジタル技術活用②(需要サイト	ジ				
(1)	特集にあたって	東京大学	吉田	好邦	43-1 (2022)	29
		パナソニック	内藤	康幸		
(2)	AIによるエネルギー需要予測	東芝	進	博正	43-1 (2022)	30
	Ţ	東芝エネルギーシステムズ	志賀	慶明		
		"	大場	健史		
(3)	太陽光発電の発電予測の最近動向	産業技術総合研究所	高松	尚宏	43-1 (2022)	34
		"	大竹	秀明		
		"	大関	崇		

題 目	所	禹 執 	筆者	Vol.−No. (発行年)	頁
(4) デジタル技術を用いた家庭用蓄電池 (5) MBD活用デジタル制御の太陽光発電・水素製造システム	Loc	op 渡邊	裕美子	43-1 (2022)	40
	·クスクロステクノロ	ジ 中島	善康	43-1 (2022)	44
MITOTIAL	・ノハノロハテックロ 名古屋大			40 1 (2022)	77
	宮崎大	•			
		· 西岡			
(6) HEMSによるエネルギー需要マネジメント ミ	サワホーム総合研究	一··· 所 飯島		43-1 (2022)	50
(7) スマートビル実現にBEMSが抱える課題と今後の期待	東京大	_		43-1 (2022)	55
		〃 赤司	泰義		
[特集]持続可能なまちづくり					
(1)特集にあたって	早稲田大	学 鷲津	明由	43-2 (2022)	16
	CDP Worldwide-Jap	an 高瀬	香絵		
(2)脱炭素化に向けた地方公共団体の取組について	環境	省 澁谷	潤	43-2 (2022)	17
(3) 自治体新電力の意義と課題 ローカ	ルグッド創成支援機	構 稲垣	憲治	43-2 (2022)	20
(4)能勢・豊能町におけるエネルギーを軸としたまちづくりへの挑戦	能勢・豊能まちづく	り 榎原	友樹	43-2 (2022)	25
(5)生きるを楽しむ西粟倉村の持続可能なまちづくり	エックス都市研究	所 河野	有吾	43-2 (2022)	29
(6)進化し続ける街「みなとみらい21」	横浜みなとみらい	21 古木	淳	43-2 (2022)	34
(7)ネクステムズが宮古島で目指すカーボンニュートラルへの道	ネクステム	ズ 比嘉	直人	43-2 (2022)	39
(8)電力と交通のセクターカップリングによる地域エネルギーマネジメ	ントー宇都宮市での	取組を中	心にー		
	早稲田大	学 石井	英雄	43-2 (2022)	44
		〃 藤本	悠		
		〃 光岡	正隆		
		" 林	泰弘		
[特集]再生可能エネルギーを貯蔵するための水電解水素製造技術	Ŧ				
(1)特集にあたって	産業技術総合研究			43-3 (2022)	12
(2)水電解水素製造の概要とその基盤技術	横浜国立大	. ,		43-3 (2022)	13
		" 黒田			
	産業技術総合開発機	構 大平	英二	43-3 (2022)	18
(4)水電解技術によるグリーン水素製造に関する最近の世界動向	- 0 - 1 1 - 1	→ // C =	ᆂᄔ	40.0 (0000)	00
みずはリサ	ーチ&テクノロジー		夏樹	43-3 (2022)	22
		ル 松田	彩		
(C) ★펜코 J ★U ★ 更紹さっこ / A	+n //-	" 米田		40.0 (0000)	07
(5)大型アルカリ水電解システム Aqualyzer の開発	担化	成 内野 〃 藤田		43-3 (2022)	21
(6)固体高分子電解質膜(PEM)を用いた水電解式水素発生装置		"	% 丛		
	¹ 鋼環境ソリューショ	いいい	田草介	43-3 (2022)	33
	· 興味祝ファユーフョ [エネルギーシステム		憲和	43-3 (2022)	37
(8)産業技術総合研究所における水電解水素製造技術の研究開発	·一·// 産業技術総合研究			43-3 (2022)	
	77X 711 10 17 17		目清剛	10 0 (2022)	• • •
			宏一		
		" 伊藤			
			治夫		
[特集]サーキュラー・エコノミーの今とこれから		• •			
(1) 特集にあたって	東京大	学 村上	進亮	43-4 (2022)	21
(2)EUのCircular Economy政策に関わる主要トレンド	日本生産性本		川和典	43-4 (2022)	22
(3)製品設計とサーキュラー・エコノミー	東京大			43-4 (2022)	28
(4)Product-Service Systemsの数理的モデリングに向けて	東京大		成昭	43-4 (2022)	33
		// 木見	田康治		
(5) Circularity (循環性)の評価とカーボンニュートラル	東京大	学 村上	進亮	43-4 (2022)	40

題 目	所属	執筆	筆者	VolNo. (発行年)	頁
(6)EV車載電池で進むCE市場化の取り組み	日本総合研究所	木通	秀樹	43-4 (2022)	44
(7)太陽光発電設備のサーキュラーエコノミーに向けた取り組]み				
A	ずほリサーチ&テクノロジーズ	小林	元	43-4 (2022)	49
	"	河本	桂一		
[特集]建築・都市におけるカーボンニュートラル(CN)推進の	D 動向				
(1)特集にあたって	立命館大学	近本	智行	43-5 (2022)	15
	竹中工務店	坂口	佳史		
<全体の動向>					
(2) 脱炭素社会に向けた住宅・建築行政における動向・総論	国土交通省	今村	敬	43-5 (2022)	16
(3)カーボンニュートラルに向けて	早稲田大学	田辺	新一	43-5 (2022)	22
<環境整備>	~ ** 1 ×*			()	
(4)ESG不動産投資推進のための環境整備	千葉大学	林	立也	43-5 (2022)	29
(5)建築設備におけるDXと環境整備	東京電機大学	百田	真史	43-5 (2022)	33
(6)カーボンニュートラルに人々をどのように巻き込むのかー		^ n=	- -	()	
(-)(-) (-) (-)	千葉大学	倉阪	秀史	43-5 (2022)	37
(7) ZEBからカーボンニュートラルへ	日建設計総合研究所	丹羽	英治	43-5 (2022)	41
<カーボンニュートラル(CN)の取組み>	~ * * * * 1. L * *	·	+ -	40 5 (0000)	4.5
(8)大学が"隗より始める"脱炭素社会	千葉商科大学	浜島	直子	43-5 (2022)	45
(9) 水素を活用したカーボンニュートラルの取組み	清水建設	下田	英介	43-5 (2022)	47
(10)カーボンニュートラルに資するオフィスでのウェルネス向		徳村	朋子	43-5 (2022)	49
(11)省エネルギーとウェルネスの両立に関する取り組み一周			+r 🕁	40 F (0000)	E 1
	鹿島建設	沖林 大西	拓実 健一	43-5 (2022) 43-5 (2022)	51
[特集]2050年のエネルギー需給への変革の方向性	"	人四	1)建一	43-3 (2022)	
(1) 特集2050年のエネルギー需給への変革の方向性 総説	東京大学	荻本	和彦	43-6 (2022)	14
(2)2050年のエネルギー供給:電力部門の展望	東京大学	杉山	昌広	43-6 (2022)	19
(2/2000年のエイル)	立命館アジア太平洋大学	松尾	雄司	40 0 (2022)	13
	自然エネルギー財団		滅一郎		
	産業技術総合研究所		路一郎		
	日本原燃		治邦		
	電力中央研究所		雄宇		
	京都大学		陽		
(3)2050年のエネルギー需要の姿	東京大学			43-6 (2022)	26
	エネルギー総合工学研究所	黒沢	厚志		
(4)エネルギー変革期におけるレジリエンスの確保	成城大学	平野	創	43-6 (2022)	32
	ENEOS	古關	惠一		
(5)2050年カーボンニュートラルに向けた今後の取組の方向 ¹	性 三菱総合研究所	井上	裕史	43-6 (2022)	37
(6)座談会:エネルギー変革に向けた取り組み	滋賀県立大学	白木	裕斗	43-6 (2022)	42
	東京電力ホールディングス	戸田	直樹		
	立命館アジア太平洋大学	松尾	雄司		
	京都大学	諸富	徹		
	(司会)東京大学	杉山	昌広		
[特集]光エネルギーによる化学変換の最前線					
(1)特集にあたって	大阪大学	安田	誠	44-1 (2023)	19
	ファンクショナル・フルイッド	藤岡	惠子		
(2)金属錯体化学を基盤とした高効率CO2還元触媒の創成	大阪大学	小杉	健斗	44-1 (2023)	20
	"	近藤	美欧		
	"	正岡	重行		

題 目	所	墓 執	筆者	Vol.−No. (発行年)	頁
(3)太陽光と水でCO₂を資源に!-1m²サイズの高効率人工光台	お成セルー 豊田中央研究	听 加藤	直彦	44-1 (2023)	26
225		″ 竹田	康彦		
		〃 森川	健志		
(4)色素増感Zスキーム水分解による太陽光エネルギー変換	東京工業大	学 西岡	駿太	44-1 (2023)	31
		" 前田	和彦		
(5)プラズモンーナノ共振器のモード強結合を用いた人工光合成	北海道大	学 三澤	弘明	44-1 (2023)	36
(6) 人工光合成の要素技術としての ${ m CO}_2$ 電解還元	大阪大	学 神谷	和秀	44-1 (2023)	41
		〃 中西	周次		
(7)太陽光・可視光エネルギーが駆動する光触媒的精密有機合 [特集]カーボンニュートラルに向けた微細藻類の利用	·成 日本工業大	学 小池	隆司	44-1 (2023)	46
(1)特集にあたって	東京大	学 吉田	好邦	44-2 (2023)	13
(2)微細藻類バイオマスリファイナリーへの新たな挑戦	東京大	学 三谷	啓志	44-2 (2023)	14
(3)微細藻類のスクリーニングによる高生産株の探索	東京大	学 細川	聡子	44-2 (2023)	18
		〃 河野	重行		
(4) 非多孔中空糸膜による微細藻類への超効率的CO ₂ 供給法0	D開発				
	中央大	学 山村	寛	44-2 (2023)	23
(5)水熱技術による微細藻類からの燃料抽出と残渣利用	東京大	学 秋月	信	44-2 (2023)	29
(6)微細藻類由来の油脂の燃料化	信州大	学 嶋田	五百里	44-2 (2023)	34
(7)微細藻類を用いた新しいバイオリファイナリープロセス	ユーグレ	ナ 鈴木	健吾	44-2 (2023)	39
		〃 豊川	知華		
(8)微細藻類を利用したカーボンリサイクルシステム	コスモエンジニアリン	グ 高岡	尚生	44-2 (2023)	44
[特集]太陽放射改変と大気からの二酸化炭素除去:展望と課					
(1)特集にあたって	東京大	学 藤井	康正	44-3 (2023)	8
(2)気候変動対策のポートフォリオの観点から考える二酸化炭素	素除去と太陽放射改変				
	東京大	学 杉山	昌広	44-3 (2023)	9
(3)太陽放射改変ガバナンスのレビュー	東京大	学 杉山	昌広	44-3 (2023)	14
(4)太陽放射改変の科学的理解の現状と課題	海洋研究開発機	構 渡辺	真吾	44-3 (2023)	19
(5)残されたバジェットを超過するとき:負債のメタファーから読み					
二酸化炭素除去と太陽放射改変の役割	国立環境研究		慎一郎		
(6)太陽放射改変の副次的影響を考慮した統合評価の動向	立命館大			44-3 (2023)	29
(7)二酸化炭素除去の必要性とその統合評価	エネルギー総合工学研究		悦史	44-3 (2023)	34
(8)バイオマスシステムによる炭素除去の可能性と課題:実装に					
	自然エネルギー財	団 相川	高信	44–3 (2023)	40
[特集]重工業におけるエネルギー・トランジションへの取り組み			<u>_</u>	(0000)	
(1) 特集にあたって	川崎重工			44-4 (2023)	15
(2)国内外におけるエネルギー・トランジションの動向	地球環境産業技術研究機			44-4 (2023)	16
(3)国際水素サプライチェーン構築に向けた取り組みについて	川崎重工	耒 亀野	雄一	44-4 (2023)	21
(4)カーボンニュートラル達成に向けた水素・アンモニア焚きガス		** 茶店	古!	44 4 (2022)	0.6
	三菱重工		直人 謙治朗	44-4 (2023)	26
		" " 林	明典		
		• • •	治美		
(5)火力発電所への適用に向けたアンモニア燃焼技術の開発重		" 小永 Ⅱ 飯田		44-4 (2023)	31
(6)バイオマス混焼火力発電所へのEFBペレットの適用性評価		·· ·I 松成		44-4 (2023)	
(7)カーボンニュートラル社会実現に向けたCO2回収技術への取				44-4 (2023)	
(8) 固体吸収材を用いたCO2回収	川崎重工			44-4 (2023)	
(O) EI IT W. (C) C (O) (E) (E) (O) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E		* 突的 " 沼口	遼平	TT T (2023)	TU
		" /2 L " 西部			
		" 妈 即 " 熊田			
		·· ਸ਼ਵਧ	思彡		

頁

[特集]2050年カーボンニュートラル社会構築に向けたセクター	ーカップリングの 取組み				
(1)特集にあたって	横浜国立大学	吉田	聡	44-5 (2023)	9
(1) 1寸未にめたり	東京電力ホールディングス	増渕		44 3 (2023)	9
			修司		
/a> 5 5 1	東京ガス	馬場	好孝	44 5 (0000)	40
(2)セクターカップリングによる問題解決と技術	電力中央研究所	高橋	雅仁	44-5 (2023)	10
(3) デンマークにおけるセクターカップリング	デンマーク王国大使館	田中し	゚゚゚゙゙゙゙゙゙゙゙゙゙゚゙゙゙゙゙゙゚゙゚゙゙゙゙゙゚゚	44-5 (2023)	15
	"	佐藤	勇一		
	"	高橋	叶		
(4)需要側エネルギーリソースを活用したデマンドレスポンス	アズビル	小松	拓美	44-5 (2023)	20
(5)V2Xの動向と展望	東京電力ホールディングス	山口	英正	44-5 (2023)	25
	II.	河井	伸哉		
	"	齊藤	且磨		
	"	濱田	拓		
(6)再生可能エネルギー由来のガス体エネルギー(水素)製造	・利用の実証事業(山梨県米)	倉山Pto	G実証))	
	東京電力ホールディングス	沖山	豊	44-5 (2023)	30
	II.	矢田部	『隆志		
(7)合成メタン(e-methane)の社会実装に向けた取り組み	東京ガス	小笠原	夏	44-5 (2023)	35
[特集]原子力発電の現状, 課題, 展望					
(1)特集にあたって	東京大学	藤井	康正	44-6 (2023)	13
(2)福島第一原子力発電所における廃炉の現状と今後の課題	東京大学	鈴木	俊一	44-6 (2023)	14
(3)東京電力福島第一原子力発電所事故からの復興事業	日本原子力研究開発機構	飯島	和毅	44-6 (2023)	19
(4)原子炉安全対策	原子力安全システム研究所	片岡	勲	44-6 (2023)	25
(5)1F事故後の原発に対する規制	東京大学	更田	豊志	44-6 (2023)	29
(6) 既設原子力発電所の今後の展望	東京大学	岡本	孝司	44-6 (2023)	35
		_			
(7)使用済み燃料の再処理	日本原然	田中	治邦	44-6 (2023)	40
(8)「核廃棄物」と「最終処分」	日本原子力研究開発機構	中山	真一	44-6 (2023)	45
[特集]本格化する洋上風力発電					
(1)特集にあたって	東芝エネルギーシステムズ	斎藤	聡	45-1 (2024)	18
(2)洋上風力政策の現状	経済産業省	山本	純平	45-1 (2024)	19
(3)大型洋上風車の開発と日本市場への導入	MHIベスタスジャパン	後藤	克繁	45-1 (2024)	23
	II.	中山	研		
	II.	佐藤	憲次		
	"	川合	正洋		
(4)洋上風力発電を支える直流送電システム技術	東芝エネルギーシステムズ	佐藤	純正	45-1 (2024)	29
(5)福島県と進める風力O&M技術開発・人材育成の拠点形成	産業技術総合研究所	田中	元史	45-1 (2024)	34
	"	久保	徳嗣		
	"	川端	浩和		
	"	栗飯原			
(6)銚子沖洋上風力発電所における技術開発の成果東	京電カリニューアブルパワー	福本		45-1 (2024)	39
(7)能代港・秋田港の洋上風力発電事業	秋田洋上風力発電	岡垣	啓司	45-1 (2024)	
(8) 浮体式洋上風力発電の研究開発の進展と課題					
(6) 浮体式洋工風力光电の研究開発の進展と味趣 [特集] 日本における再エネ早期大量導入には何が必要か?	東京大学	亚个	英之	45-1 (2024)	47
(1)特集にあたって	自然エネルギー財団	高瀬	玉纶	45-2 (2024)	13
(1/1可未1~0)だりに				4J ⁻ Z (ZUZ4)	13
(0) 1000(ウはナキョギ) フェルーシルフ1000(ウはーナッギ	早稲田大学	鷲津	明由		
(2)100%自然エネルギーシステムにおける100%自然エネルギー	_			45 0 (222.5)	
	マース工科大学トーマス・			45-2 (2024)	14
(番羽)	訳) 自然エネルギー財団	高瀬			
	11	斉藤	哲夫		

題 目	所	属	執筆者	Vol.−No. (発行年)	頁
(3)洋上風力発電早期大量導入に向けた現状と課題	Ørsted Ja	apan .	古川真梨子	2 45–2 (2024)	17
		-	富田 沙希		
			柿沼 雄介		
(4)太陽光発電の早期大量導入と主力電源化に向けた展望と課	題 産業技術総合研究		大関 崇		22
(5)地域との共生	名古屋		丸山 康司		
(6)再生可能エネルギー超大量導入を実現する系統柔軟性	京都		安田 陽		
(7)エネルギーの分散化により地域の産業革命をもたらすメッシュ					
	東京電力パワーグリ			告 45-2 (2024)	43
(8)電気自動車の活用によるVPP事業の可能性について			渡部 優		
[特集]進展する熱電変換技術			~ = -	2 10 2 (2021)	
(1)特集にあたって	産業技術総合研究	究所 :	安田 和明	月 45-3 (2024)	8
		"	山本 湾	-	
(2)熱電発電の社会実装に向けた材料・モジュール・評価技術の	開発				
	産業技術総合研究	究所 :	太田道位	45-3 (2024)	9
		<i>,,</i>	今里 和樹	讨	
		"	大川顕次郎	ß	
		"	天谷 康孝	ž	
(3)カーボンニュートラルへの省エネ貢献およびセンサ用独立電	源				
として活用可能な革新的熱電材料・デバイスの開発	物質・材料研究権	幾構 :	森 孝太	£ 45-3 (2024)	16
(4)工場排熱を電力回生する熱電発電製品	ŀ	(ELK :	村瀬 隆治	告 45-3 (2024)	21
		<i>,,</i>	後藤 大輔	Ħ	
		<i>,,</i>	牧野 一也	1	
(5)工場排熱を活用するkW級熱電発電システム	ヤンマーホールディング	グス :	玉木 脩二	45-3 (2024)	25
	ヤンマーeス	ター :	福留二郎	月 ·	
	ヤンマーホールディング	グス :	黒岩 芳信	- L	
		"	鵜飼 洋虫		
		<i>,</i> ,	中川 修一		
(6)水蒸気潜熱回収型熱電発電システムの開発	I	白山 ロ	内田健太郎	ß 45-3 (2024)	30
(7)秋田県における熱電発電システムの導入事例	ロイヤルパ-	ーツ	柴田 努	§ 45-3 (2024)	35
[特集]まちづくりGX最前線				, ,	
(1)特集にあたって	茨城	大学	吉田友紀子	45-4 (2024)	8
	筑波		岡島 敬一		
(2)まちづくりGX~まちづくりのグリーン化におけるエネルギーの					
	国土交	通省 :	菊池 雅彦	45-4 (2024)	9
(3)GX 時代のエネルギー企業が地域と共に育むまちづくり	関西		高宮 紀子		
(4)地域視点で成長可能な脱炭素を協創する「大みかグリーンネ				, , , , , , , , , , , , , , , , , , , ,	
	日立製作	作所	入江 直彦	45-4 (2024)	18
(5)脱炭素社会を目指したまちづくり~八重洲スマートエネルギー	-ネットワークの構築~			, ,	
	東京		鈴木 淳史	2 45-4 (2024)	23
(6)建設業界におけるGHG排出量の見える化	住友友			\$ 45-4 (2024)	
(7)脱炭素社会に向けた開発と取組みについて	竹中工			£ 45–4 (2024)	
[特集]二酸化炭素分離・回収技術の新展開		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,	2 10 1 (2021)	
	ンクショナル・フルイ	ッド i	藤岡 惠子	45-5 (2024)	13
(2)CO2回収・利用事業の現状~排ガスCO2回収技術について	三菱重		上條		
(3)化学吸着:外部電位制御による二酸化炭素の吸脱着のため			七八章 七種 紘規		
	13-110000 干1110円7		関根 雰		_5
(4)化学固定:統合化固定・反応系による大気中CO2回収	東北江		福島 康裕		24
(5) 希薄CO ₂ 回収を実現する促進輸送膜の開発	産業技術総合研究		世岛		
V. V. V. V. C. C. D. C. C. C. D. C.	全不认而而口切		以野 東西 河野 雄樹		20
		.,	ペリエゾ 仏出作	-J	

(8) 岩石風化促進の技術開発における課題と展望 早稲日大学 見	題目	所	属	執	筆者	Vol.−No. (発行年)	頁
(7) 教が個におけるCCS政策の状況と課題	(6) 岩石風化促進の技術開発における課題と展望	早稲田が	- 学	中垣	降雄	45–5 (2024)	34
(1)特集にあたって 東京大学 海井 原工 45-6(2024) 12 (2) 高温ガス炉による水素製造 日本原子力研究開発機構 返場 67-6(2024) 13 (3) 小型モジュール型軽水炉(SMR)の研究開発 エネルギー総合工学研究所 45-6(2024) 13 (3) 小型モジュール型軽水炉(SMR)の研究開発 東京大学 加田 45-6(2024) 13 (4) 高速炉の研究開発 東京大学 加田 45-6(2024) 13 (5) 核酸性の研究開発 東京大学 加田 45-6(2024) 14 (6) 核変技技術の研究開発 東京大学 加田 45-6(2024) 15 (6) 核変技技術の研究開発 東京大学 加田 45-6(2024) 26 (6) 核変技技術の研究開発 東京大学 加田 45-6(2024) 27 (6) 核変技技術の研究開発 東京大学 加田 45-6(2024) 27 (6) 核変技技術の研究開発 日本原子力研究開発機構 西原 62 (4) (2025) 18 (2) 次世代の産業基盤となるバイオものづくり バイオインダストリー協会 中川 智 46-1(2025) 18 (2) 次世代の産業基盤となるバイオものづくり バイオインダストリー協会 中川 智 46-1(2025) 18 (2) 次世代の産業基盤となるバイオものづくり バイオイングストリー協会 中川 智 46-1(2025) 18 (2) 次世代の産業基盤となるバイオものづくり バイオイングストリー協会 中川 情 報酬 46-1(2025) 18 (2) 次世代の産業基盤となるバイオものづくりへの接戦 日揮ホールディングス 天道 美企 46-1(2025) 28 (4) (4) バイオ由来製品の社会実装促進を目指したRTTE発バイオものづくリプラいフォーム 地球環境産業技術研究機構 久保 世 46-1(2025) 27 (4) バイオ由来製品の社会実装促進を目指したRTTE発バイオものづくリプラいフォーム 15 (4) (4) (4) がオコスプラスチック・バイが振料開発 アンス・バイオインベンス 天道 美工 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)					.—		
(1) 特集にあたって 東京大学 第井 康正 45-6 (2024) 12 (2) 高温ガス炉による水素製造 日本原子力研究開発機構 宏場 成相 45-6 (2024) 13 (3) 小型モジュール型軽水炉(SMR)の研究開発 エネルギー総合工学研究所 35 元		性// 注 /	. 1	KT ILL	1012	40 0 (2024)	71
(2)高温ガス炉による水素製造 日本原子力研究開発機構 拠場 成明 45~6(2024) 13 (3)小型モジュール型軽水炉(SMR)の研究開発 エネルギー総合工学研究所 都筑 和集 45~6(2024) 24 (4)高速炉の研究開発 東京大学 加田 45~6(2024) 25 (5) 核融合炉の研究開発 日本原子力研究開発機構 西原 位間 45~6(2024) 25 (6) 核変接技術の研究開発 日本原子力研究開発機構 西原 位間 45~6(2024) 28 (6) 核変接技術の研究開発 日本原子力研究開発機構 西原 位間 45~6(2024) 28 (7)原子力への理解促産活動と原子力産業界の人材確保・育成 日本原子力研究用発機構 西原 位間 45~6(2024) 38 (7)原子力への理解促産活動と原子力産業界の人材確保・育成 大阪企立大学 供容 期 46~1(2025) 18 (2)次世代の産業基礎となるバイオものづくり バイオインダストリー協会 中川 智 46~1(2025) 18 (2)次世代の産業基礎となるバイオものづくり バイオインダストリー協会 中川 智 46~1(2025) 18 (3) ロボティクスと人を駆使したスマートセル開発 パッカス・パイオインベーション 丸山 正晴 46~1(2025) 27 (3) ロボティクスと人を駆使したスマートセル開発 パッカス・パイオインベーション 丸山 正晴 46~1(2025) 27 (4) (4) バイオ由来製品の社会実装促進を目指したRITE発バイオものづくリプラ小フィーム 19 は環境産業技術研究機構 久保 代 位 (2025) 27 (5) CO2を直接原料とするバイオものづくりの挑戦 日澤ホールディングス 対 行 46~1(2025) 37 (5) CO2を直接原料とするバイオものづくりの挑戦 王子ホールディングス 対 行 46~1(2025) 37 (5) CO2を直接原料とするバイオマスブラスチック・パイ 燃料開発 エチホールディングス 財 46~1(2025) 37 (5) CO2を直接原料加速化モデルと用する最近の動向と今後の見選し 東京大学 松橋 20 (2025) 38 (4) (4) 海外におけんでチルに囲する最近の動向と今後の見選し 東京大学 松橋 20 (2025) 18 (2) 電力がよりサイクル燃料に対するCO2カウントルールの国際標準化をめぐる動向と対応と エ月 長 46~2(2025) 18 (4) 環境計測の国際標準化 金のよびシッションを背景とする国際標準化を動作を動成と中かいた同けた多の限型 大 66~2(2025) 37 (4) 環境計測の国際標準化 (4) 環境計測の国際標準化 (5) EVの電力色付け技術の概念実証およびカーボンニュートラルに向けた多の展型 大 66~2(2025) 37 (4) 環境計測の国際標準化 (4) ほの国際研究を関係 (4) 世界の主が、 60 (4) (4) (4) 環境計測の国際標準化 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)		亩 克 力	- 学	藤井	康正	45-6 (2024)	12
(3) 小型モジュール型軽水炉(SMR)の研究開発 エネルギー総合工学研究所					-		
(4)高速炉の研究開発 東京大学 高田 本 15-6 (2024) 22 (5)核融合力の研究開発 東京大学 加田 弘司 45-6 (2024) 22 (5)核融合力の研究開発 東京大学 加田 弘司 45-6 (2024) 36 (6)核変換技術の研究開発 日本原子力産業協会 高多 智彦 45-6 (2024) 36 (7)原子力への理解促進活動と原子力産業界の人材確保・育成 日本原子力産業協会 高多 智彦 45-6 (2024) 36 (7)原子力への理解促進活動と原子力産業界の人材確保・育成 日本原子力産業協会 高多 智彦 45-6 (2024) 36 (7)廃子力への理解促進活動と原子力産業界の人材確保・育成 日本原子力産業協会 市川 省 46-1 (2025) 19 (3)口ボティクスとAIを駆使したスマートセル開発 パッカス・バイオイノベーション 九山 正院 46-1 (2025) 24 (4)パイオ由来製品の社会実験促進を目指したRITE発パイオものづくリプラットフォーム 地球環境産業技術研究機構 久保田 使 46-1 (2025) 28 (6)木質由来のバイオマスブラスチック・バイオ燃料開発 王子ホールディングス 大渕 贵之 46-1 (2025) 37 (6)木質由来のバイオマスブラスチック・バイオ燃料開発 王子ホールディングス 財 大 46-1 (2025) 37 (6)木質由来のパイオマスブラスチック・バイオ燃料開発 王子ホールディングス 財 大 46-1 (2025) 37 (7)海外におけるバイオリファイナリー事業の助向 カーボシニュートラル燃料技術センター 原 海底 46-1 (2025) 41 (7) 海外におけるバイオリファイナリー事業の助向 カーボシニュートラル性会のための標準化・戦略研究会の動 レー体像 72-2 (2025) 18 (2025) 18 (2025) 19 (2025							
(5) 核融合炉の研究開発 東京大学 山田 弘司 45-6(2024) 26 (6) 核変換技術の研究開発 日本原子力の理解促進活動と原子力産業界の人材確保・育成 日本原子力政党開発機構 西原 健ご 45-6(2024) 31 (7) 原子力への理解促進活動と原子力産業界の人材確保・育成 日本原子力政学院機構 西原 健ご 45-6(2024) 32 (7) 原子力への理解促進活動と原子力産業界の人材確保・育成 日本原子力産業体 第 物 45-6(2024) 38 (7) 存集にあたって 大阪公立大学 炭谷 順一 46-1(2025) 18 (2) 次世代の産業基態となるバイオものづくり パイオインダストリー協会 州 位 46-1(2025) 19 (3) ロボティクスとAIを駆使したスマートセル開発 パッカス・バイオイングストリー協会 州 位 46-1(2025) 28 (4) パイオ由来製品の社会実装促進を目指したRITE発バイオものづくリプラットフォーム 地球環境産業技術研究機構 久保田 位 46-1(2025) 28 (5) CO₂を直接原料とするバイオものづくりへの挑戦 日本ホーディングス 大渕 賞之 46-1(2025) 37 (5) CO₂を直接原料とするバイオものづくりへの挑戦 日本ホーディングス 大渕 賞之 46-1(2025) 37 (7) 海外におけるバイオワフアイナリー事業の動向 カーボンニュートラル燃料技術センター 原 浩昭 46-1(2025) 37 (7) 海外におけるバイオワフアイナリー事業の動向 カーボンニュートラル燃料技術センター 原 浩昭 64-1(2025) 41 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル性会のた個標準化戦略研究会の動しと今後の見通し 東京大学 松橋 廃治 46-2(2025) 18 (7) 海外におけるバイオリファイナリーボンニュートラル社会のための標準化散動のと対本の取組力 東京大学 松橋 廃治 46-2(2025) 18 (3) カーボンリサイクル燃料に対するCO₂カウントルールの国際標準化をめぐる動向と対応・一・一・世帯におして 14 規格協会 大野 香代 46-2(2025) 18 (4) 環境計測の国際標準化 産業環境管理協会 大野 香代 46-2(2025) 18 (4) 環境計測の国際標準化 企業に行事後の展望 本田技所 第 小							
(6) 核変換技術の研究開発					-		
7月 原子カへの理解促進活動と原子力産業界の人材確保・育成 日本原子力産業協会		******	•				
(1)特集にあたって 大阪公立大学 飲名 順一 46-1 (2025) 18 (2)次世代の産業基盤となるバイオものづくり バイオインダストリー協会 中川 智 46-1 (2025) 29 (3) ロボティクスとAIを駆使したスマートセル開発 バッカス・バイオイノベーション 丸山 正晴 46-1 (2025) 29 (4)バイオ由来製品の社会実装促進を目指したRITE発バイオものづくりブラットフォーム 地球環境産業技術研究機構 久保田 健 46-1 (2025) 28 (5) GCO。を直接原料とするバイオものづくりへの挑戦 日揮ホールディングス 大渕 食之 46-1 (2025) 33 (6) 不賞由来のバイオマスプラスチック・バイオ燃料開発 エーネールディングス 5月 食一 46-1 (2025) 37 (7)海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 浩阳 46-1 (2025) 41 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料が変金の動向と今後の見通し 東京大学 松橋 隆治 46-2 (2025) 41 (7) 日本型標準加速化モデルと助ーポンニュートラル社会のための標準化戦略研究会の動向と今後の見通し 1日本型標準加速化モデルとカーボンニュートラル社会のための標準化戦略研究会の動向と今後の見通し 3)カーボンリサイクル燃料に対するCO。カウントルールの国際標準化をめぐる動向と対応・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一							
(1)特集にあたって 大阪公立大学 炭谷 順一 46-1 (2025) 18 (2)次世代の産業基盤となるバイオものづくり バイオインダストリー協会 中川 智 46-1 (2025) 19 (3) ロボティクスとAIを駆使したスマートセル開発 パッカス・バイオイノベーション 丸山 正晴 46-1 (2025) 24 が中 武蔵 "竹中 武蔵 "竹中 武蔵" (4)バイオ由来製品の社会実装促進を目指したRITE発バイオものづくリブラットフォーム 地球環境産業技術研究機構 久保田 健 5 将行 5 (5) CO」を直接原料とするバイオものづくりへの挑戦 日揮ホールディングス 財 章 46-1 (2025) 33 (6) 不質由来のバイオマスブラスチック・バイオ燃料開発 王子ホールディングス 野口 裕一 46-1 (2025) 37 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 浩昭 46-1 (2025) 41 [2025] 24 (4) 日本型標準加速化モデルとカーボンニュートラル社会のための標準化戦略研究会の動向と今後の見通し 東京大学 松橋 陸治 46-2 (2025) 42 (2) 電カシステムのトランジッションを背景とする国際標準化の動向と日本の取組み 早稲田大学 石井 英雄 46-2 (2025) 18 (3) カーボンリサイクル燃料に対するCO。カウントルールの国際標準化をめぐる動向と対応・一一一一十日本地のの場合 日本ガス協会 エ月 良太 46-2 (2025) 18 小原 充裕 46-2 (2025) 18 (4) 環境計測の国際標準化 産業環境管理協会 大野 香代 46-2 (2025) 18 (4) 環境計測の国際標準化 (5) EVの電力色付け技術の概念実証およびカーボンニュートラルに向けた今後の展望 本田技研工業 上野 将樹 46-2 (2025) 35 (4) 東京大学 松尾 越司 46-2 (2025) 35 (4) 東京大学 松尾 越司 46-2 (2025) 35 (4) 東京大学 松尾 越司 46-3 (2025) 35 (4) 東京大学 大学 松尾 越司 46-3 (2025) 19 東京大学 大学 大学 松尾 越司 46-3 (2025) 19 東京大学 大学 大		不 日 八 日 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	<i>,</i>	- <i>></i>		40 0 (2024)	00
(2)次世代の産業基盤となるバイオものづくり バイオインダストリー協会 中川 智 46-1 (2025) 19 (3) ロボティクスとAIを駆使したスマートセル開発 バッカス・バイオイバーション 丸山 正轄 46-1 (2025) 24 (4) バイオ由来製品の社会実装促進を目指したRITE発バイオものづくりブラットフォーム 地球環境産業技術研究機構 久保田 健 46-1 (2025) 28 (5) CO2を直接原料とするバイオものづくりへの挑戦 日拝ホールディングス 大渕 貴之 46-1 (2025) 37 (7) 海外におけるバイオワファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 治昭 46-1 (2025) 37 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 治昭 46-1 (2025) 37 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 治昭 46-1 (2025) 41 (大阪公立士	- 学	農火	順—	46-1 (2025)	10
(3)ロボティクスとAを駆使したスマートセル開発 バッカス・バイオイノベーション 丸山 正晴 46-1 (2025) 24							
(4)バイオ由来製品の社会実装促進を目指したRITE発バイオものづくリブラットフォーム 地球環境産業技術研究機構 久保田 健 46-1 (2025) 28 (5) CO」を直接原料とするバイオものづくリへの挑戦 日揮ホールディングス 大渕 党之 46-1 (2025) 33 (6) 木質由来のバイオマスブラスチック・バイオ機料開発 王子ホールディングス 野口 裕一 46-1 (2025) 37 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 浩昭 46-1 (2025) 41 [特集]日本型標準加速化モデルに関する最近の動向と今後の見通し (1) 日本型標準加速化モデルとカーボンニュートラル社会のための標準化戦略研究会の動向と今後の見通し (2) 電力システムのトランジッションを背景とする国際標準化の動向と日本の取組み 早稲田大学 石井 英雄 46-2 (2025) 13 (3) カーボンリサイクル燃料に対するCO』カウントルールの国際標準化をめぐる動向と対応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					_		
(4) バイオ由来製品の社会実装促進を目指したRITE発バイオものづくりブラットフォーム 地球環境産業技術研究機構 久保田 健 46-1 (2025) 28 (5) CO₂を直接原料とするバイオものづくりへの挑戦 日揮ホールディングス 大渕 貴之 46-1 (2025) 37 (6) 木質由来のバイオマスプラスチック・バイが燃料開発 王子ホールディングス 野口 裕一 46-1 (2025) 37 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 浩昭 46-1 (2025) 41 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 浩昭 46-1 (2025) 41 (7) 日本型標準加速化モデルとカーボンニュートラル社会のための標準化戦略研究会の動向と今後の見通し 東京大学 松橋 隆治 46-2 (2025) 8 (2) 電力システムのトランジッションを背景とする国際標準化の動向と日本の取組み 早稲田大学 石井 英雄 46-2 (2025) 13 (3) カーボンリサイクル燃料に対するCO₂カウントルールの国際標準化をめぐる動向と対応・モー・一中出れの場合 日本ガス協会 エ月 良太 46-2 (2025) 18 (4) 環境計測の国際標準化 産業環境管理協会 大野 香代 46-2 (2025) 18 (4) 環境計測の国際標準化 産業環境管理協会 大野 香代 46-2 (2025) 25 (5) EVの電力色付け技術の概念実証およびカーボンニュートラルに向けた今後の展望 本田技研工業 上野 将樹 46-2 (2025) 30 (6) 水素を巡る最近の動向一戦略、標準化を中心に 日本規格協会 小林 直哉 46-2 (2025) 35 (情勢力・ボンニュートラルに向けたモデル分析 コ命館アジア太平洋大学 松尾 雄司 46-3 (2025) 14 (2) AIM(アジア太平洋統合評価モデル)を用いた2050年脱炭素社会の実現に向けた排出経路と対策の評価 国立環境研究所 日比野 46-3 (2025) 14 (2) AIM(アジア太平洋統合評価モデル)を用いた2050年脱炭素社会の実現に向けた排出経路と対策の評価 国立環境研究機構 秋元 圭吾 46-3 (2025) 19 地球環境産業技術研究機構 秋元 圭吾 46-3 (2025) 24 「	(3)ロハブイグへとAIを駆使した人、一トセル用光	ハッカス・ハイオイノベーショ				40-1 (2025)	24
地球環境産業技術研究機構 久保田 健 46-1 (2025) 28	(4) ぶくナウ支制 P の社会事状 P 米ナ P 杉 L + PITE ※	ごノナナ のづノロポニ・・・ フェーノ	,,	11) 14	此敝		
(5) CO ₂ を直接原料とするバイオものづくりへの挑戦 日揮ホールディングス 大渕 52 46-1 (2025) 33 (6) 木質由来のバイオマスプラスチック・バイオ燃料開発 王子ホールディングス 別 62 46-1 (2025) 37 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 78m 46-1 (2025) 41 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 78m 46-1 (2025) 41 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 78m 46-1 (2025) 41 (7) 海外におけるバイオリファイナリー事業の動向と今後の見通し 東京大学 松橋 隆泊 46-2 (2025) 8 (2) 電力システムのトランジッションを背景とする国際標準化の動向と日本の取組み 早稲田大学 石井 英雄 46-2 (2025) 13 (3) カーボンリサイクル燃料に対するCO ₂ カウントルールの国際標準化をめぐる動向と対応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(4)ハイオ田米製品の任会美装促進を目指したRITE先)		k + ≢	九原	m <i>l</i> z ±	46 1 (202E)	20
(5) CO ₂ を直接原料とするバイオものづくりへの挑戦 日揮ホールディングス 大渕 貴之 46-1 (2025) 33 (6) 木質由来のバイオマスブラスチック・バイオ燃料開発 王子ホールディングス 野口 裕一 46-1 (2025) 37 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 浩昭 46-1 (2025) 41 [持集]日本型標準加速化モデルに関する最近の動向と今後の見通し 東京大学 松橋 隆治 46-2 (2025) 8 (2) 電力システムのトランジッションを背景とする国際標準化の動向と日本の取組み 早稲田大学 石井 英雄 46-2 (2025) 13 (3) カーボンリサイクル燃料に対するCO ₂ カウントルールの国際標準化をあぐる動向と対応・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一		地 球块块性未找侧研究的				46-1 (2025)	28
(6) 木質由来のバイオマスプラスチック・バイオ燃料開発 王子ホールディングス 野口 裕一 46-1 (2025) 37 (7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 浩昭 46-1 (2025) 41 [特集]日本型標準加速化モデルに関する最近の動向と今後の見通し 東京大学 松橋 隆治 46-2 (2025) 8 (2) 電力システムのトランジッションを背景とする国際標準化の動向と日本の取組み 早稲田大学 石井 英雄 46-2 (2025) 13 (3) カーボンリサイクル燃料に対するCO2カウントルールの国際標準化をめぐる動向と対応・モーザー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(5)00 を直接原料トナスバノナナのベノリュの地群	口捏土 山 🏲 💉		. –		40 1 (0005)	00
(7) 海外におけるバイオリファイナリー事業の動向 カーボンニュートラル燃料技術センター 原 浩昭 46-1 (2025) 41 [持集]日本型標準加速化モデルに関する最近の動向と今後の見通し 東京大学 松橋 陸治 46-2 (2025) 8 (2)電力システムのトランジッションを背景とする国際標準化の動向と日本の取組み 早稲田大学 石井 英雄 46-2 (2025) 13 (3) カーボンリサイクル燃料に対するCO2カウントルールの国際標準化をあぐる動向と対応一e-methaneの場合 日本ガス協会 エ月 良太 46-2 (2025) 18	_						
カーボンニュートラル燃料技術センター 原 浩昭 46-1 (2025) 41 [特集] 日本型標準加速化モデルに関する最近の動向と今後の見通し		土士ホールティング	/ 人 :	野山	俗一	46-1 (2025)	3/
		1°		_	14 pm	40 4 (0005)	
(1) 日本型標準加速化モデルとカーボンニュートラル社会のための標準化戦略研究会の動向と今後の見通し 東京大学 松橋 隆治 46-2 (2025) 8 (2) 電力システムのトランジッションを背景とする国際標準化の動向と日本の取組み 早稲田大学 石井 英雄 46-2 (2025) 13 (3) カーボンリサイクル燃料に対するCO2カウントルールの国際標準化をめぐる動向と対応 e-methaneの場合 日本ガス協会 エ月 良太 46-2 (2025) 18 " 小原 充裕 (4) 環境計測の国際標準化 産業環境管理協会 大野 香代 46-2 (2025) 25 (5) EVの電力色付け技術の概念実証およびカーボンニュートラルに向けた今後の展望 本田技研工業 上野 将樹 46-2 (2025) 30 " 佐々木正法 " 新崎 知 (6) 水素を巡る最近の動向一戦略、標準化を中心に 日本規格協会 小林 直截 46-2 (2025) 35 [特集]カーボンニュートラルに向けたモデル分析 (1) 特集にあたって: 長期エネルギー政策立案のためのモデル分析 (2) AIM(アジア太平洋統合評価モデル)を用いた2050年脱炭素社会の実現に向けた排出経路と対策の評価 国立環境研究所 日比野 剛 46-3 (2025) 19 " 培井 利彦 (3) 地球環境産業技術研究機構 秋元 圭吾 46-3 (2025) 24 " 佐野 史典 " 本間 隆嗣 (4) 持続可能な未来に向けた参加型・対話型シナリオ分析の実践 地球環境戦略研究機関 栗山 昭久 46-3 (2025) 24			· —		浩昭	46-1 (2025)	41
東京大学 松橋 隆治 46-2 (2025) 8 (2)電力システムのトランジッションを背景とする国際標準化の動向と日本の取組み 早稲田大学 石井 英雄 46-2 (2025) 13 (3)カーボンリサイクル燃料に対するCO₂カウントルールの国際標準化をめぐる動向と対応ーeーmethaneの場合 日本ガス協会 エ月 良太 46-2 (2025) 18			=1 - - 1		<i>"</i> ~ = "	. .	
(2)電力システムのトランジッションを背景とする国際標準化の動向と日本の取組み 早稲田大学 石井 英雄 46-2 (2025) 13 (3)カーボンリサイクル燃料に対するCO ₂ カウントルールの国際標準化をめぐる動向と対応ーe-methaneの場合 日本ガス協会 エ月 良太 46-2 (2025) 18	(1)日本型標準加速化モナルとカーホンニュートフル社会		- ,,,				
早稲田大学 石井 英雄 46-2 (2025) 13 (3)カーボンリサイクル燃料に対するCO ₂ カウントルールの国際標準化をめぐる動向と対応-e-methaneの場合 日本ガス協会 工月 良太 46-2 (2025) 18 (4)環境計測の国際標準化 産業環境管理協会 大野 香代 46-2 (2025) 25 (5) EVの電力色付け技術の概念実証およびカーボンニュートラルに向けた今後の展望 本田技研工業 上野 将樹 46-2 (2025) 30 "佐々木正法"新崎 知 (6)水素を巡る最近の動向一戦略、標準化を中心に 日本規格協会 小林 直哉 46-2 (2025) 35 [持集]カーボンニュートラルに向けたモデル分析 (1)特集にあたって:長期エネルギー政策立案のためのモデル分析 (1)特集にあたって:長期エネルギー政策立案のためのモデル分析 国立環境研究所 日比野 剛 46-3 (2025) 14 (2) AIM (アジア太平洋統合評価モデル)を用いた2050年脱炭素社会の実現に向けた排出経路と対策の評価 国立環境研究所 日比野 剛 46-3 (2025) 19 " 芦名 秀- " 増井 利彦 (3)地球環境産業技術研究機構 秋元 圭吾 46-3 (2025) 24 " 佐野 史典 " 本間 隆嗣 (4) 持続可能な未来に向けた参加型・対話型シナリオ分析の実践 地球環境戦略研究機関 栗山 昭久 46-3 (2025) 29			字	松橋	隆治	46-2 (2025)	8
(3)カーボンリサイクル燃料に対するCO2カウントルールの国際標準化をめぐる動向と対応一e-methaneの場合 日本ガス協会 エ月 良太 46-2 (2025) 18	(2)電力システムのトランシッションを背景とする国際標準		334			()	
日本ガス協会 工月 良太 46-2 (2025) 18	(0) 十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二				J ()_		13
(4)環境計測の国際標準化 産業環境管理協会 大野 香代 46-2 (2025) 25 (5) EVの電力色付け技術の概念実証およびカーボンニュートラルに向けた今後の展望 本田技研工業 上野 将樹 46-2 (2025) 30	(3)カーホンリサイグル燃料に対する(02カリントルール)						
(4)環境計測の国際標準化 産業環境管理協会 大野 香代 46-2 (2025) 25 (5) EVの電力色付け技術の概念実証およびカーボンニュートラルに向けた今後の展望 本田技研工業 上野 将樹 46-2 (2025) 30 # 佐々木正法 # 新崎 知 (6) 水素を巡る最近の動向一戦略,標準化を中心に 日本規格協会 小林 直哉 46-2 (2025) 35 [持集]カーボンニュートラルに向けたモデル分析		日本カス協				46-2 (2025)	18
(5) EVの電力色付け技術の概念実証およびカーボンニュートラルに向けた今後の展望 本田技研工業 上野 将樹 46-2 (2025) 30 " 佐々木正法 " 新崎 知 (6) 水素を巡る最近の動向一戦略、標準化を中心に 日本規格協会 小林 直哉 46-2 (2025) 35 [特集]カーボンニュートラルに向けたモデル分析 (1) 特集にあたって: 長期エネルギー政策立案のためのモデル分析 (2) AIM (アジア太平洋統合評価モデル)を用いた2050年脱炭素社会の実現に向けた排出経路と対策の評価 国立環境研究所 日比野 剛 46-3 (2025) 19 " 芦名 秀一 " 増井 利彦 (3) 地球環境産業技術研究機構 (RITE) による日本の2040年および2050年のエネルギーシステム分析 地球環境産業技術研究機構 秋元 圭吾 46-3 (2025) 24 " 佐野 史典 " 本間 隆嗣 (4) 持続可能な未来に向けた参加型・対話型シナリオ分析の実践 地球環境戦略研究機関 栗山 昭久 46-3 (2025) 29	() = T 1 1 2 2 2 2 2 2 2 2	-t- viv. =m-1-t- ff- =m-1-				()	
本田技研工業 上野 将樹 46-2 (2025) 30			会 :	大野	杳代	46-2 (2025)	25
# 佐々木正法 # 新崎 知	(5)EVの電力色付け技術の概念実証およびカーボンニュ						
(6) 水素を巡る最近の動向一戦略、標準化を中心に 日本規格協会 小林 直哉 46-2 (2025) 35 [特集]カーボンニュートラルに向けたモデル分析 (1) 特集にあたって: 長期エネルギー政策立案のためのモデル分析		本田技研コ				46-2 (2025)	30
(6) 水素を巡る最近の動向一戦略、標準化を中心に 日本規格協会 小林 直哉 46-2 (2025) 35 [特集]カーボンニュートラルに向けたモデル分析 (1) 特集にあたって: 長期エネルギー政策立案のためのモデル分析					木正法		
【特集】カーボンニュートラルに向けたモデル分析 (1) 特集にあたって: 長期エネルギー政策立案のためのモデル分析							
(1)特集にあたって: 長期エネルギー政策立案のためのモデル分析		日本規格協	3会	小林	直哉	46-2 (2025)	35
立命館アジア太平洋大学 松尾 雄司 46-3 (2025) 14 (2) AIM (アジア太平洋統合評価モデル)を用いた2050年脱炭素社会の実現に向けた排出経路と対策の評価 国立環境研究所 日比野 剛 46-3 (2025) 19							
(2) AIM (アジア太平洋統合評価モデル)を用いた2050年脱炭素社会の実現に向けた排出経路と対策の評価 国立環境研究所 日比野 剛 46-3 (2025) 19	(1)特集にあたって:長期エネルギー政策立案のための	Eデル分析					
国立環境研究所 日比野 剛 46-3 (2025) 19							14
#	(2)AIM(アジア太平洋統合評価モデル)を用いた2050年	脱炭素社会の実現に向けた排	出経路	と対	策の評	価	
# 増井 利彦 (3)地球環境産業技術研究機構(RITE)による日本の2040年および2050年のエネルギーシステム分析 地球環境産業技術研究機構 秋元 圭吾 46-3(2025) 24 # 佐野 史典 # 本間 隆嗣 (4)持続可能な未来に向けた参加型・対話型シナリオ分析の実践 地球環境戦略研究機関 栗山 昭久 46-3(2025) 29		国立環境研究	了所	日比!	野剛	46-3 (2025)	19
(3)地球環境産業技術研究機構(RITE)による日本の2040年および2050年のエネルギーシステム分析 地球環境産業技術研究機構 秋元 圭吾 46-3 (2025) 24 " 佐野 史典 " 本間 隆嗣 (4)持続可能な未来に向けた参加型・対話型シナリオ分析の実践 地球環境戦略研究機関 栗山 昭久 46-3 (2025) 29			"	芦名	秀一		
地球環境産業技術研究機構 秋元 圭吾 46-3 (2025) 24 " 佐野 史典 " 本間 隆嗣 (4)持続可能な未来に向けた参加型・対話型シナリオ分析の実践 地球環境戦略研究機関 栗山 昭久 46-3 (2025) 29			"	増井	利彦		
" 佐野 史典" 本間 隆嗣(4)持続可能な未来に向けた参加型・対話型シナリオ分析の実践 地球環境戦略研究機関 栗山 昭久 46-3 (2025) 29	(3)地球環境産業技術研究機構(RITE)による日本の204	10年および2050年のエネルギー	システ	・ムケ	∱析		
" 本間 隆嗣 (4)持続可能な未来に向けた参加型・対話型シナリオ分析の実践 地球環境戦略研究機関 栗山 昭久 46-3 (2025) 29		地球環境産業技術研究機	機構	秋元	圭吾	46-3 (2025)	24
(4)持続可能な未来に向けた参加型・対話型シナリオ分析の実践 地球環境戦略研究機関 栗山 昭久 46-3(2025) 29			"	佐野	史典		
			"	本間	隆嗣		
" 田中 勇伍	(4)持続可能な未来に向けた参加型・対話型シナリオ分類	折の実践 地球環境戦略研究機	機関 :	栗山	昭久	46-3 (2025)	29
			″	田中	勇伍		

デロイトトーマツコンサルティング 大久保辰哉 46-3 (2025) 35	(5)TIMESによる2040年エネルギーミックスのモデル分析					
# 大屋 日本エネルギー経済研究所 尾羽 秀晃 46-3 (2025) 40 40 40 40 40 40 40 4	デロイト	トーマツコンサルティング	大久	呆辰哉	46-3 (2025)	35
(6) 太陽光・風力発電の立地影響を考慮した2040・50年のエネルギーミックス分析 日本エネルギー経済研究所 尾羽 秀晃 46-3 (2025) 40 (7) 効率化と自然エネルギーを中心としたエネルギーシナリオ 2040年までにエネルギー自給率758を達成する 自然エネルギー財団 高瀬 香絵 46-3 (2025) 45		"	宇都語	宮瑞生		
(6) 太陽光・風力発電の立地影響を考慮した2040・50年のエネルギーミックス分析 日本エネルギー経済研究所 尾羽 秀晃 46-3 (2025) 40 (7) 効率化と自然エネルギーを中心としたエネルギーシナリオ 2040年までにエネルギー自給率75%を達成する 自然エネルギー財団 高瀬 香絵 46-3 (2025) 45		"	大屋	昌士		
日本エネルギー経済研究所 尾羽 秀晃 46-3 (2025) 40 (7) 効率化と自然エネルギーを中心としたエネルギーシナリオ 2040年までにエネルギー自給率75%を達成する 自然エネルギー財団 高瀬 香絵 16-3 (2025) 45		"	濵﨑	博		
(7) 効率化と自然エネルギーを中心としたエネルギーシナリオ 2040年までにエネルギー自給率75%を達成する 自然エネルギー財団 高瀬 香絵 46-3 (2025) 45	(6)太陽光・風力発電の立地影響を考慮した2040・50年のエネル-	ギーミックス分析				
自然エネルギー財団 高瀬 香絵 46-3 (2025) 45 1	!	日本エネルギー経済研究所	尾羽	秀晃	46-3 (2025)	40
# 木村誠一郎	(7)効率化と自然エネルギーを中心としたエネルギーシナリオ 20	40年までにエネルギー自給率	₹75%を達	産成する		
## 西田 裕子		自然エネルギー財団	高瀬	香絵	46-3 (2025)	45
# 斉藤 哲夫 東京科学大学 分山 達也 「特集]化学変換による二酸化炭素活用への展開		"	木村訂	成一郎		
東京科学大学 分山 達也 「持集]化学変換による二酸化炭素活用への展開		"	西田	裕子		
「特集]化学変換による二酸化炭素活用への展開		"	斉藤	哲夫		
(1)特集にあたって 大阪大学 安田 誠 46-4 (2025) 8 (2)電解還元を用いた二酸化炭素の固定化:脱芳香族カルボキシル化反応の開発 北海道大学 美多 剛 46-4 (2025) 9 (3)酵素を触媒としてCO2を有効利用する有機合成 東京科学大学 奥 悠莉 46-4 (2025) 15 / 松田 知子 (4)CO2からのギ酸製造 ~希少金属を使用しないCO2変換法~ 神戸大学 松原 亮介 46-4 (2025) 20 (5)二酸化炭素からの炭化水素合成 大阪大学 藤原 正浩 46-4 (2025) 26 (6)環境循環型メタノールの社会実装に向けた展望 三菱ガス化学 久古 陽一 46-4 (2025) 31 (7)常圧・低濃度CO2を用いたポリウレタン原料の合成 産業技術総合研究所 小泉 博基 46-4 (2025) 37 / トリウルタン原料の合成 産業技術総合研究所 小泉 博基 46-4 (2025) 37 / 大阪大学 春樹 パ 竹内 勝彦 パ 松本 和弘 パ 深谷 訓久 パ 深谷 訓久 パ 電 単哲 東ソー 中繁 誠人		東京科学大学	分山	達也		
(2)電解還元を用いた二酸化炭素の固定化:脱芳香族カルボキシル化反応の開発	[特集]化学変換による二酸化炭素活用への展開					
北海道大学 美多 剛 46-4 (2025) 9 (3)酵素を触媒としてCO ₂ を有効利用する有機合成 東京科学大学 奥 悠莉 46-4 (2025) 15	(1)特集にあたって	大阪大学	安田	誠	46-4 (2025)	8
(3)酵素を触媒としてCO ₂ を有効利用する有機合成 東京科学大学 奥 悠莉 46-4 (2025) 15	(2)電解還元を用いた二酸化炭素の固定化:脱芳香族カルボキシ	ル化反応の開発				
(4) CO ₂ からのギ酸製造 ~希少金属を使用しないCO ₂ 変換法~ 神戸大学 松原 亮介 46-4 (2025) 20 (5) 二酸化炭素からの炭化水素合成 大阪大学 藤原 正浩 46-4 (2025) 26 (6) 環境循環型メタノールの社会実装に向けた展望 三菱ガス化学 久古 陽一 46-4 (2025) 31 (7) 常圧・低濃度CO ₂ を用いたポリウレタン原料の合成 産業技術総合研究所 小泉 博基 46-4 (2025) 37 が内 勝彦 " 松本 和弘 " 深谷 訓久 " 崔 準哲 東ソー 中繁 誠人		北海道大学	美多	剛	46-4 (2025)	9
(4) CO ₂ からのギ酸製造 ~希少金属を使用しないCO ₂ 変換法~ 神戸大学 松原 亮介 46-4 (2025) 20 (5) 二酸化炭素からの炭化水素合成 大阪大学 藤原 正浩 46-4 (2025) 26 (6) 環境循環型メタノールの社会実装に向けた展望 三菱ガス化学 久古 陽一 46-4 (2025) 31 (7)常圧・低濃度CO ₂ を用いたポリウレタン原料の合成 産業技術総合研究所 小泉 博基 46-4 (2025) 37 が内 勝彦 " 松本 和弘 " 深谷 訓久 " 崔 準哲 東ソー 中繁 誠人	(3)酵素を触媒としてCO₂を有効利用する有機合成	東京科学大学	奥	悠莉	46-4 (2025)	15
(5)二酸化炭素からの炭化水素合成 大阪大学 藤原 正浩 46-4 (2025) 26 (6)環境循環型メタノールの社会実装に向けた展望 三菱ガス化学 久古 陽一 46-4 (2025) 31 (7)常圧・低濃度CO2を用いたポリウレタン原料の合成 産業技術総合研究所 小泉 博基 46-4 (2025) 37 ドウス 特別 25 (2025) 37 (2025) 3		"	松田	知子		
(6)環境循環型メタノールの社会実装に向けた展望 三菱ガス化学 久古 陽一 46-4 (2025) 31 (7)常圧・低濃度CO2を用いたポリウレタン原料の合成 産業技術総合研究所 小泉 博基 46-4 (2025) 37	(4) CO $_2$ からのギ酸製造 ~希少金属を使用しないCO $_2$ 変換法~	神戸大学	松原	亮介	46-4 (2025)	20
(7)常圧・低濃度CO ₂ を用いたポリウレタン原料の合成 産業技術総合研究所 小泉 博基 46-4(2025) 37	(5)二酸化炭素からの炭化水素合成	大阪大学	藤原	正浩	46-4 (2025)	26
- パー 長江 春樹 パー 竹内 勝彦 パー 松本 和弘 パー 深谷 訓久 パー 崔 準哲 東ソー 中繁 誠人	(6)環境循環型メタノールの社会実装に向けた展望	三菱ガス化学	久古	陽一	46-4 (2025)	31
# 竹内 勝彦 # 松本 和弘 # 深谷 訓久 # 崔 準哲 東ソー 中繁 誠人	(7)常圧・低濃度CO₂を用いたポリウレタン原料の合成	産業技術総合研究所	小泉	博基	46-4 (2025)	37
" 松本 和弘 " 深谷 訓久 " 崔 準哲 東ソー 中繁 誠人		"	長江	春樹		
# 深谷 訓久 # 崔 準哲 東ソー 中繁 誠人		"	竹内	勝彦		
" 崔 準哲 東ソー 中繁 誠人		"	松本	和弘		
東ソー・中繁・誠人		"	深谷	訓久		
		"	崔	準哲		
" FD *+		東ソー	中繁	誠人		
" 圾口 孝太		"	坂口	孝太		

羽村

敏